
CSRI SUMMER PROCEEDINGS 2008

The Computer Science Research Institute
at Sandia National Laboratories

Editors:
Denis Ridzal and S. Scott Collis

Sandia National Laboratories

December 11, 2008

A Department of Energy
National Laboratory

SAND2008-8257P

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed-Martin Company, for the United States Department of Energy

under Contract DE-AC04-94AL85000.

ii CSRI Summer Proceedings 2008

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government, nor any agency thereof,
nor any of their employees, nor any of their contractors, subcontractors, or their employees,
make any warranty, express or implied, or assume any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or process dis-
closed, or represent that its use would not infringe privately owned rights. Reference herein to
any specific commercial product, process, or service by trade name, trademark, manufacturer,
or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government, any agency thereof, or any of their contractors or
subcontractors. The views and opinions expressed herein do not necessarily state or reflect
those of the United States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the
best available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.doe.gov/bridge

Available to the public from

U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/ordering.htm

D
EP

ARTMENT OF ENERG
Y

• •U
N

IT
ED

STATES OF AM

ER
I C

A

D. Ridzal and S.S. Collis iii

Preface
The Computer Science Research Institute (CSRI) brings university faculty and students to
Sandia National Laboratories for focused collaborative research on computer science, com-
putational science, and mathematics problems that are critical to the mission of the laborato-
ries, the Department of Energy, and the United States. CSRI provides a mechanism by which
university researchers learn about and impact national– and global–scale problems while si-
multaneously bringing new ideas from the academic research community to bear on these
important problems.

A key component of CSRI programs over the last decade has been an active and produc-
tive summer program where students from around the country conduct internships at CSRI.
Each student is paired with a Sandia staff member who serves as technical advisor and men-
tor. The goals of the summer program are to expose the students to research in mathematical
and computer sciences at Sandia and to conduct a meaningful and impactful summer research
project with their Sandia mentor. Every effort is made to align summer projects with the stu-
dent’s research objectives and all work is coordinated with the ongoing research activities
of the Sandia mentor in alignment with Sandia technical thrusts and the needs of the NNSA
Advanced Scientific Computing (ASC) program that has funded CSRI from its onset.

Starting in 2006, CSRI has encouraged all summer participants and their mentors to
contribute a technical article to the CSRI Summer Proceedings, of which this document is
the third installment. In many cases, the CSRI proceedings are the first opportunity that
students have to write a research article. Not only do these proceedings serve to document
the research conducted at CSRI but, as part of the research training goals of CSRI, it is the
intent that these articles serve as precursors to or first drafts of articles that could be submitted
to peer–reviewed journals. As such, each article has been reviewed by a Sandia staff member
knowledgeable in that technical area with feedback provided to the authors. Several articles
have or are in the process of being submitted to peer–reviewed conferences or journals and
we anticipate that additional submissions will be forthcoming.

For the 2008 CSRI Proceedings, research articles have been organized into the following
broad technical focus areas — computational mathematics and algorithms, discrete mathe-
matics and informatics, architectures and systems software, and applications — which are
well aligned with Sandia’s strategic thrusts in computer and information sciences.

We would like to thank all participants who have contributed to the outstanding technical
accomplishments of CSRI in 2008 as documented by the high quality articles in this proceed-
ings. The success of CSRI hinged on the hard work of 20 enthusiastic student collaborators
and their dedicated Sandia technical staff mentors. It is truly impressive that the research
described herein occurred primarily over a three month period of intensive collaboration.

CSRI benefited from the administrative help of Deanna Ceballos, Bernadette Watts, Mel
Loran, Dee Cadena, and Vonda Coleman. The success of CSRI is, in large part, due to their
dedication and care, which are much appreciated. We would also like to thank those who
reviewed articles for this proceedings — their feedback is an important part of the research
training process and has significantly improved the quality of the papers herein. We would
like to thank David Womble for his advice, guidance and overall CSRI management. Finally,
we want to acknowledge the ASC program for their continued support of the CSRI and its
activities which have benefited both Sandia and the greater research community.

Denis Ridzal
S. Scott Collis

December 11, 2008

iv CSRI Summer Proceedings 2008

D. Ridzal and S.S. Collis v

Table of Contents

Preface
D. Ridzal and S.S. Collis . iii

Computational Mathematics and Algorithms
D. Ridzal and S.S. Collis . 1

Optimal Coarsening Methods for Adaptivity in Transient Problems
B.J. Wilson and B.R. Carnes . 3

A Survey of Model Order Reduction Methods for LTI Systems in Descriptor Form
R. Nong and H. Thornquist . 14

Sparse–Grid Integration in Finite Element Spaces
M. Keegan, D. Ridzal and P. Bochev . 32

Overview and Performance Analysis of the Epetra/OSKI
Matrix Class Interface in Trilinos
I. Karlin and J. Hu . 44

Algebraic Multigrid For Power Grid Networks
Y. Chen and R.S. Tuminaro . 55

Multigrid Considerations for Stochastic Projection Systems
R.D. Berry, R.S. Tuminaro, and H.N. Najm 65

Discrete Mathematics and Informatics
D. Ridzal and S.S. Collis . 75

Improvements to a Nested Dissection Approach for Partitioning Sparse Matrices
M.M. Wolf and E.G. Boman . 77

Heterogeneous Ensemble Classification
S.A. Gilpin and D.M. Dunlavy . 90

Towards Scalable Parallel Hypergraph Partitioning
A. Buluç and E.G. Boman . 109

Problem-Specific Customization of (Integer) Linear Programming Solvers with
Automatic Symbol Integration
N. L. Benavides, A. Carosi, W. E. Hart, V. J. Leung, and C. Phillips 120

Architectures and Systems Software
D. Ridzal and S.S. Collis . 129

Implementation and Evaluation of a Staging Proxy for Checkpoint I/O
C. Reiss, J. Lofstead, and R. Oldfield . 131

Performance Analysis of the SiCortex SC072
B.J. Martin, A.J. Leiker, J.H. Laros, and D.W. Doerfler 142

Instructing the Memory Hierarchy with In-Cache Computations
P.A. La Fratta and A.F. Rodrigues . 155

Arbitrary Dimension Reed-Solomon Coding and Decoding for
Extended RAID on GPUs
M.L. Curry, H.L. Ward, A. Skjellum, and R.B. Brightwell 167

Applications
D. Ridzal and S.S. Collis . 175

Peridynamics as an upscaling of Molecular Dynamics
P. Seleson, M.L. Parks, and M. Gunzburger 177

Modelling Quantum Effects for CHARON
J. Kim and G. Hennigan . 185

Calculation of Melting Points using Atomistic Simulations
S. Jayaraman, E.J. Maginn, S.J. Plimpton, A. von Lilienfeld, and A.P. Thompson192

vi CSRI Summer Proceedings 2008

Convergence Verification of Static Solvers via Energy Minimization in LAMMPS
C. Harden and R. Lehoucq . 199

Building a Sustainable Simulation Testing Environment
T.L. Ames, A.C. Robinson, R.R. Drake, J.H. Niederhaus, V.G. Weirs, and D.A.
Labreche . 209

D. Ridzal and S.S. Collis 1

Computational Mathematics and Algorithms

Articles in this section focus on fundamental numerical algorithms ranging from mesh
adaptation, optimal quadrature, and model reduction to numerical linear algebra and multi-
grid algorithms that each have broad potential for application in a variety of computational
disciplines.

Wilson and Carnes study the selection of optimal coarsening parameters for the mesh–
adaptive solution of time–dependent PDEs. Their results indicate that the optimal amounts
of pre and post coarsening depend heavily on the nature of the problem at hand. Nong and
Thornquist present a survey of model order reduction techniques used for the solution of
linear time–invariant (LTI) systems in descriptor form. The presentation and analysis of the
techniques, which are applied to LTI systems arising in the simulation of integrated electrical
circuits, are followed by useful recommendations based on the Hankel singular values. Kee-
gan et al. investigate the use of sparse grids, typically employed in stochastic sampling, for
the numerical integration in “physical space”, with applications to the finite element solution
of PDEs. They devise an adaptive algorithm for the construction of numerical integration
rules that are well suited for exact integration of complete polynomial spaces of a given de-
gree. Karlin and Hu describe a new matrix class in the linear algebra package Epetra that
gives Trilinos applications access to the Optimized Sparse Kernel Interface (OSKI) package.
They observe that OSKI has the potential to produce large speedups in sparse matrix opera-
tions and thus directly benefit a number of important Sandia applications. Chen and Tuminaro
propose a multigrid algorithm for the solution of linear systems associated with saddle–point
problems in which the constraint equations are of the “Dirichlet” or “Neumann” type. Such
systems arise in the simulation of power grid networks. The proposed algorithm effectively
converts the saddle–point system to a symmetric positive definite system to which standard
multigrid techniques can be applied. Berry et al. study the application of classical multigrid
ideas to the solution of linear systems associated with stochastic PDEs. They investigate con-
ditions for positive definiteness of such linear systems and, based on their generic structure,
develop an effective multigrid approach.

D. Ridzal
S.S. Collis

December 11, 2008

2 CSRI Summer Proceedings 2008

CSRI Summer Proceedings 2008 3

OPTIMAL COARSENING METHODS FOR ADAPTIVITY IN TRANSIENT
PROBLEMS

BRIAN J. WILSON ∗ AND BRIAN R. CARNES †

Abstract. In transient problems, the cost of adaptivity can be much more significant than in stationary problems.
It is therefore desirable to carefully manage adaptivity cost within the overall simulation cost budget. An overall
goal is to design an adaptivity system for transient problems that is both accurate and efficient, with a minimum
of problem-specific tuning needed. In particular, coarsening parameters become much more important. By tuning
coarsening parameters and eliminating adaptivity when the error falls within acceptable limits, computational cost
can be significantly reduced. We present some optimal values for coarsening parameters. Furthermore, we illustrate
adaptive timestepping with a simple one dimensional example and then consider its effect on coarsening parameters.

1. Introduction. In general, one can encounter two potential problems when solving a
partial differential equation numerically. The first is that while a finite element solver runs
quickly on a sufficiently coarse grid, the potential error in the computed solution may lie
outside acceptable boundaries. On the other hand, if the error is kept within acceptable toler-
ances by using a sufficiently fine grid, the solver may run too slow to be of any practical use.
An ideal mesh which strikes a balance between the two extremes should be coarse in regions
with low error and fine in regions with high error. This is the essential idea behind adaptivity.
We start by solving the PDE on a coarse mesh, which can be done cheaply. Using this crude
solution, we obtain an estimate of the error on any given element using an a posteriori error
estimator and refine elements in regions where the most error occurs. We repeat this process,
adapting the mesh until the estimated error falls below a specified tolerance. Furthermore, it
is often beneficial to coarsen previously refined elements on which the solution has low error.
This allows more refinement of elements on which the solution has high error.

We can also apply adaptivity to transient problems. This consists of a two step process.
First, the solution is advanced from one timestep to the next using a numerical integrator,
such as the Implicit (Backward) or Semi-Implicit Euler method. Second, the spatial error
at that timestep is reduced to an acceptable tolerance using the adaptive refinement method
described above. We also consider the case when the error is already acceptable after advanc-
ing the solution to a new timestep, presumably because of refinement at previous timesteps.
In this case we may proceed directly to the next timestep without performing any adaptive
refinement. However, if the error is far below the tolerance, we may wish to coarsen some
elements in regions of low error until the total error is somewhat larger, but still below the
acceptable tolerance. This can reduce computational cost for the remaining timesteps. Figure
1.1 illustrates how adaptivity should behave with respect to the error as time progresses.

Finally, one might also wish to implement adaptivity in time. The basic idea is to adjust
the timestep size based on the local truncation error (LTE), which measures the local error
introduced by discretization in time. Since the exact error is not known, an estimate of the
LTE is obtained as the difference of approximate solutions computed using two different
numerical integration schemes. The timestep is then adjusted according to the proportion of
the desired error tolerance to the estimated LTE.

In each of the situations above (spatial adaptivity in stationary problems, spatial adaptiv-
ity in transient problems, and spatial and temporal adaptivity in transient problems) several
unresolved issues remain. What method should be used to determine which elements are
refined or coarsened? To what degree does this method depend on problem-specific char-
acteristics? In this paper, we use the percent of total error method to mark elements for

∗Colorado State University, wilson@math.colostate.edu
†Sandia National Laboratories, bcarnes@sandia.gov

4 Optimal Coarsening Methods

F. 1.1. General Scheme for Spatial Adaptivity in Transient Problems

refinement and coarsening. The percent of total error marker ranks the elements according
to their percentwise contributions to the total error. It then marks the highest error elements
for refinement (resp. lowest error elements for coarsening) up to specified percentages of the
total error. Based on previous studies, we mark elements corresponding to 70% of the total
error for refinement. We limit our studies to optimal percentages of error to coarsen.

We study three (transient) solutions of a typical parabolic problem (corresponding to dif-
ferent source terms), which exhibit different types of behavior: advection of a singularity out
of a domain, circulation of a smooth function inside the domain, and growth and decay of a
sine wave. Since the source terms are contrived so that we know the exact solutions, we can
use the exact error in the percent of total error method to drive adaptivity. The percent of total
error method is implemented in the SIERRA [2] codes ENCORE [1], which computes the
interpolant of a known solution, and ARIA [4], which computes the finite element approxi-
mation to the solution of a partial differential equation. Due to space constraints, we present
detailed results only for the advecting singularity, both with and without temporal adaptivity.

The paper is organized as follows. Section 2 examines coarsening parameters for spatial
adaptivity applied to the transient problems without adaptive timestepping. In section 3, we
present a one dimensional example illustrating the method of adaptive timestepping. Sec-
tion 4 examines the effect of temporal adaptivity on optimal coarsening parameters for the
advecting singularity solution. Finally, we present our conclusions in section 5.

2. Spatial Coarsening in Transient Problems. Coarsening is much more useful in
transient problems than in stationary problems. This is because the singularities and other
regions of the solution with high error can shift as time passes, leaving behind regions of the
mesh where high levels of refinement are no longer required. If such regions are coarsened
as local error decreases, significant time savings may result.

First we will study the H1 error in the interpolant of explicitly defined functions using
ENCORE, and afterwords we will examine the error in the solution of corresponding dif-
ferential equations using ARIA. As mentioned above, we will use the percent of total error
marker so we can precisely control the percentage of the total error we wish to reduce through
refinement. Based on the results of previous studies for stationary problems, we refine ele-
ments with 70% of the total error, and limit our study to the optimal percentage of error to
coarsen.

One problem which can occur in a transient problem is that the error not only meets the
tolerance but then decreases too much as time progresses. This is a problem because if we can
meet the error tolerance with a much coarser mesh, we can significantly reduce computational
time. Hence if the error is below a certain percentage of the tolerance (85% worked well

B.J. Wilson and B.R. Carnes 5

for our purposes) we perform one step of coarsening without doing any refinement. (If the
error remains between the tolerance and 85% of the tolerance when the timestep is advanced,
we proceed immediately to the next timestep without adapting the mesh.) We refer to this
new type of coarsening (which decreases the number of elements and increases the error)
as postcoarsening in order to distinguish it from the standard method of coarsening (which
occurs simultaneously with refinement in order to decrease the error). We also refer to the
standard method as precoarsening. This terminology is appropriate since in general the mesh
is first refined down to the error tolerance and coarsened later, when the error remains below
the tolerance after a timestep is completed.

We wish to find optimal precoarsening and postcoarsening parameters for each function.
The general approach will be to first perform a 2D coarse parameter study, estimate either
the minimum precoarsening or postcoarsening parameter, and then perform a more detailed
1D parameter study on the second parameter with the first parameter set at a minimum. This
approach is feasible because the 2D parameter study results are fairly monotone. Then, we
estimate the optimal parameters and plot the error and number of elements at each timestep
using these parameters. Furthermore, we compare these results with corresponding plots
for some non-optimal parameters to determine what makes the optimal parameters optimal.
Finally, we include some sample meshes generated by the given function with the optimal
parameters.

We examine the function

u(x, t) =
(√

(x1 − t)2 + x2
2

).8
, x = (x1, x2) ∈ [−1, 1]2, t ∈ [0, 2]

which has a singularity at x = (t, 0). In fact this is simply the function |x|.8 shifting to the
right. Eventually, the singularity moves out of the domain. The two dimensional parameter
study, using ENCORE to compute the interpolant, plots computational time as a function of
pre and post coarsening percentages. It is shown in Figure 2.1(a). It is clear from this graph
that 10% precoarsening is optimal no matter what the value of postcoarsening. Hence we
fix precoarsening at 10% and perform a more detailed study of the optimal postcoarsening
parameter, shown in Figure 2.1(b).

(a) Pre/Post Coarsening (2D) (b) Postcoarsening (10% Precoarsening)

F. 2.1. ENCORE Coarsening Parameter Studies

It appears that the optimal percentage for postcoarsening is somewhere between 40%
and 50%. To see why this is so, we compare number of elements and error at each timestep
for three different postcoarsening percentages, 10%, 40%, and 90% in Figure 2.2 below.

6 Optimal Coarsening Methods

(a) H1 Error (b) Number of Elements

F. 2.2. Error and Number of Elements for Various Postcoarsening Percentages (10% Precoarsening)

We can see that with 10% postcoarsening, the error falls well below the tolerance ε = .01,
but the number of elements is not significantly reduced, resulting in wasted time spent com-
puting solutions on meshes which are too large. On the other hand, using 90% postcoarsening
causes so much coarsening that the error grows too high, and more time is wasted re-refining
the mesh. At about 40% postcoarsening, however, an optimal number of elements are refined
so that the error stays just slightly beneath the tolerance, allowing an effective reduction in
the number of elements in the mesh yielding substantive time savings. A few sample meshes
for the solution with 10% precoarsening and 40% postcoarsening are displayed in Figure 2.3.

F. 2.3. Sample Meshes (10% Precoarsening, 40% Postcoarsening)

Since the interpolant is a fairly good approximation to the solution in the space of piece-
wise linear functions, we would expect these coarsening parameters to be fairly reliable esti-
mates of the optimal parameters for computing the finite element solution in ARIA as well.
However, there are a few differences. A full parameter study in ARIA is impractical because

B.J. Wilson and B.R. Carnes 7

it fails to converge for many parameter values, for example if precoarsening is too high. In
this case the precoarsening cancels out the refinement to the point where the adaptivity does
not reduce the error to an acceptable tolerance. We can, however, examine the finite element
approximation in ARIA using the optimal parameters suggested by computing the interpolant
in ENCORE. As before we plot error and number of elements with respect to time for 10%,
40%, and 90% precoarsening with no postcoarsening in Figure 2.4.

(a) H1 Error (b) Number of Elements

F. 2.4. Error and Number of Elements for Various Postcoarsening Percentages (10% Precoarsening)

Similar analyses were performed for the solutions

v(x, t) = exp(−(x1 − .5 cos(πt))2 − (x2 − .5 sin(πt))2)

and

w(x, t) = 1 + sin(4πx1) sin(5πx2) · t · e−.41π2t

for x = (x1, x2) ∈ [−1, 1]2 and t ∈ [0, 2], with source terms f computed appropriately. The
first solution v(x, t) is a bump function circulating around the domain. A 2D parameter study
indicates that the fastest convergence times are achieved when the postcoarsening is set to 0%.
Since the bump function stays inside the domain, the error never decreases to a point where
postcoarsening is beneficial. The 1D parameter study for 0% postcoarsening indicates that
about 20% precoarsening is optimal. This coarsens previously refined elements in regions that
the bump has already passed by to allow new refinement in the areas currently occupied by the
bump. The second solution w(x, t) is essentially a decaying sine wave. In order to simplify the
problem so that the initial condition is constant, the sine wave grows linearly from a constant
before decaying exponentially, peaking at about t = .2. The 2D parameter study for this
solution indicates just the opposite than for v(x, t); the best convergence times are obtained
with 100% postcoarsening! Since the exponential decay of the sine wave causes a rapid
decrease in error, full postcoarsening quickly reduces the number of elements in the mesh.
The 1D parameter study shows that 0 − 17% precoarsening is optimal. Since w(x, t) involves
no advection, the regions of high error in the solution remain stationary. Precoarsening may
have some small benefit in shrinking and expanding the refined regions as the sine wave
grows and decays, respectively. Clearly, precoarsening beyond 17% merely works against
refinement, increasing computational time.

3. Adaptive Timestepping Example. In transient problems, the difference between in-
terpolation error and finite element approximation error becomes more significant. This is

8 Optimal Coarsening Methods

because spatial interpolation at a given time does not incur any time error. In contrast, a fully
discrete finite element scheme requires both spatial and temporal approximation. For exam-
ple, using linear finite elements and Backward Euler time integration, the L∞−Hs a priori
error estimate for the finite element error takes the form

max
0≤n≤N

‖u(tn) − Un‖Hs(Ω) ≤ C1 k +C2 h2−s,

for s = 0, 1, where k is the timestep and h is the spatial mesh size. The difference between
this and spatial interpolation error is the presence of the timestep size k, resulting from the
numerical time integration. A proof is given in the book by Thomee [5].

Algorithms for timestep adaptivity also become important, since choosing a variable
timestep size can be both more accurate and efficient than using a fixed timestep. In Aria, the
adaptive timestep scheme is based on work by P.M. Gresho [3]. The time integration schemes
in Aria are called θ-schemes, since they are parameterized by θ, which ranges from zero to
one. Here we set θ = 1, which corresponds to the Backward (Implicit) Euler method.

As an example to illustrate adaptive timestepping, we consider the solution of the simple
ordinary differential equation

y′ = αy

y(0) = y0

Of course this has the exact solution

y(t) = y0eαt

We partition the interval of time [0,T] as 0 = t0 < t1 < ... < tN = T , where N is the number
of discrete timesteps. We follow the convention that y(t) represents the exact solution and Y
the discrete approximation, with Yn being the value of Y at time tn. The approximation Yn

is easily computed using the Backward Euler method. This consists of replacing y′ with a
difference quotient and evaluating the right hand side of the equation at at time tn to obtain

Yn = (1 − αkn)−1Yn−1

where kn = tn − tn−1 is the timestep. If the timestep is constant, i.e. k = kn, we can further
solve for Yn in terms of the initial condition Y0 = y0 to obtain

Yn = (1 − αk)−ny0 =

(
1

1 − αk

) tn
k

y0 = y0e[1
k ln(1

1−αk)]tn

In the limit as k → 0, the approximation converges to the exact solution since
limk→0

1
k ln

(
1

1−αk

)
= α.

In order to estimate the error in the computed approximation (also known as the correc-
tor), we use a second approximation computed using a different method of numerical integra-
tion. The predictor Yn

p is computed using the Forward Euler method, in which the right hand
side of the equation is evaluated at time tn−1 instead of tn. It is given by

Yn
p = (1 + αkn)Yn−1,

and again in the case of a constant timestep k = kn, we substitute for Yn−1 to obtain the
solution

Yn
p = (1 + αk)(1 − αk)1−ny0 =

1 − α2k2

(1 − αk)n y0

B.J. Wilson and B.R. Carnes 9

We can now compute the difference between the predictor and the corrector as

|Yn − Yn
p | =

[
(1 − αkn)−1 − (1 + αkn)

]
Yn−1 =

α2k2
n

1 − αkn
Yn−1 ≈ O(k2)

In the computation of the predictor Yp, the right hand side of the equation is evaluated at
time tn−1, underestimating the difference quotient on the left hand side, which causes Yp to
undershoot the exact solution y. Similarly, Y will overshoot the exact solution y, so that
|Y − Yp| is very roughly twice the actual error. Hence it is reasonable to use 1

2 |Y − Yp| as an
estimate for local truncation error (LTE). In general, 1

2‖Y − Yp‖ is a good estimate of the LTE
for problems in any number of dimensions assuming the timestep size is sufficiently small.
We note that this estimate is second order in time, which is true in general for the Backward
Euler method.

The adaptive timestepping strategy is based on this a priori knowledge of the LTE. Let
the current timestep by given by kn. To achieve a target error of ε, we use the ratio of the
errors and the order of accuracy to compute a candidate timestep size kc

n:

ε

1/2 ‖Yn − Yn
p‖
≈

(
kc

n

kn

)2

Solving this equation for kc
n yields the candidate timestep formula

kc
n ≡ kn

(
2 ε

‖Yn − Yn
p‖

)1/2

To verify the accuracy of this timestep, one could re-solve for Yn and recompute the error
estimator. However, in codes like Aria the candidate timestep is used to compute the next
timestep, so that kn+1 ≡ kc

n. In our case we can calculate the exact LTE since we know the
analytic solution. Using the Backward Euler method applied to the exact solution y(tn−1) we
obtain a modified corrector given by

Ỹn = (1 − αkn)−1y(tn−1) =
y0eαtn−1

1 − αkn

which yields the exact LTE:

|Ỹn − y(tn)| =

∣∣∣∣∣∣ y0eαtn−1

1 − αkn
− y0eαtn

∣∣∣∣∣∣ = |y0|eαtn

∣∣∣∣∣∣ eαkn

1 − αkn
− 1

∣∣∣∣∣∣
where we have used the fact that tn = tn−1 + kn.

We plot the LTE estimate 1
2 |Y − Yp| and actual LTE |Ỹn − y(tn)| with constant timestep

k = .01, α = 1, and inital condition y0 = 1 in Figure 3.1(a). The estimate is remarkably
accurate. It should be noted that these quantities measure the local error since Yn

p and Yn

are both computed from Yn−1, the value of the corrector at the previous timestep, and the
modified corrector Ỹn is computed from the solution itself at the previous timestep. If we
wish to obtain global error estimates instead, we can compute a modified predictor Ŷn

p from
the previous (also modified) predictor value Ŷn−1

p :

Ŷn
p = (1 + αkn)Ŷn−1

p

and compute Yn from Yn−1 as before. With constant timestep k = kn, we solve to obtain

Ŷn
p = (1 + αkn)ny0

10 Optimal Coarsening Methods

Since Ŷn
p and Yn are not computed from the same quantity at the previous timestep as before,

these calculations include the effect of the accumulation of error over all previous timesteps.
We plot the global error estimate 1

2 |Y − Ŷp| and exact global error |Y − y| in Figure 3.1(b).
It should be noted that these quantities measure the local error since Yn

p and Yn are both
computed from Yn−1, the value of the corrector at the previous timestep, and the modified
corrector Ỹn is computed from the solution itself at the previous timestep. If we wish to obtain
global error estimates instead, we can compute a modified predictor Ŷn

p from the previous
(also modified) predictor value Ŷn−1

p :

Ŷn
p = (1 + αkn)Ŷn−1

p

and compute Yn from Yn−1 as before. With constant timestep k = kn, we solve to obtain

Ŷn
p = (1 + αkn)ny0

(a) Local Error (b) Global Error

F. 3.1. Comparison of Local and Global Truncation Errors vs. Predictor-Corrector Estimates

We can now implement adaptive timestepping by using the LTE 1
2 |Y

n − Yn
p | to compute

the the next timestep kn+1 as outlined above. The global error estimate cannot be used because
of the Forward Euler timestepping used to run the problem forward in time; after error has
accumulated over multiple timesteps there is no cost effective way to go back in time to reduce
it. If we were to try using the global error to compute the next timestep, the timestep would
be adapted infinitely smaller, preventing the solution from ever reaching the final time. Thus
the best one can do is to control the LTE at any given timestep, in which case the global error
is bounded by the LTE tolerance multiplied by the number of timesteps. For example, the
adaptive timestep for our example problem is

kn+1 =
1
α

√
2ε
y0

(1 − αkn)n

The local and global error estimates are presented in Figure 3.2; however in both cases the
estimate for the LTE is used to adapt the timestep. Note that the adaptive algorithm was
implemented with ε = .01. Figure 3.2 clearly shows that the LTE is controlled so that it
remains below .01. However, the adaptive timestepping uses only 15 timesteps as compared
to the 100 timesteps used with fixed timestep k = .01. The global error should be bounded
by 15ε = .15. Indeed, as we can see in Figure 3.2, the error at the final timestep is just below
.15.

B.J. Wilson and B.R. Carnes 11

(a) Local Error (b) Global Error

F. 3.2. Comparison of Local and Global Truncation Errors vs. Predictor-Corrector Estimates With Adaptive
Timestepping

4. Adaptivity in Space and Time. We now examine the effects of adaptivity in time
on optimal coarsening parameters. As in the previous section, we compute the timestep
according to the formula

kn+1 ≡ kn

(
2 ε

‖Yn − Yn
p‖

)1/2

,

where ε is the desired error tolerance for the LTE at the current timestep, and Yn
p and Yn are the

predictor and corrector computed using the Explicit and Implicit Euler methods, respectively.
Thus at times when the solution varies slowly with respect to time, the LTE estimate will be
smaller than the specified error tolerance, causing the timestep to increase. At times when the
solution varies rapidly with respect to time, the predicted error will be larger than the specified
tolerance, causing the timestep to decrease. Adapting the timestep in this way allows us to use
the largest possible timesteps which limit the increase the error to the specified tolerance ε.
As our results indicate, this can significantly reduce computational time. We apply adaptive
timestepping to the solution of the parabolic problem

εut − ∆u = f

where the source f is computed from the exact solution

u(x, t) = 1 + sin(4πx1) sin(5πx2) · t · e−.41π2t

which is a sine wave undergoing linear growth and exponential decay. Computing the solution
with ARIA, we plot the error and number of elements with respect to time using both 70%
and 50% postcoarsening in Figures 4.1- 4.2. Refinement is set at 70% and precoarsening at
15%, which are appropriate parameters given the previous analysis.

Two observations should be noted from these results. First, we can see that with 70%
postcoarsening the mesh is overcoarsened when the error gets small enough to trigger post-
coarsening, and must be re-refined down to the error tolerance. If we reduce the postcoars-
ening to 50% this problem disappears. We hypothesize that adaptive timestepping somewhat
reduces the need for postcoarsening since decay is handled not only by spatial coarsening
but also by increasing the timestep size. Second, although it is not shown in Figures 4.1-4.2,
adaptive timestepping somewhat reduces computational time, in the first case (70% post-
coarsening) from 787 s to 579 s and in the second (50% postcoarsening) from 700 s to 440 s.

12 Optimal Coarsening Methods

(a) H1 Error (b) Number of Elements

F. 4.1. Error and Number of Elements with Adaptive Timestepping (70% Postcoarsening)

(a) H1 Error (b) Number of Elements

F. 4.2. Error and Number of Elements with Adaptive Timestepping (50% Postcoarsening)

A comparison of the size of the timestep in the fixed vs. the adaptive cases, plotted in Figure
4.3, reveals the reason for these savings: the adaptive method uses less timesteps to reach the
final time t = 1, resulting in less computation overall.

5. Conclusions. Our results indicate that the optimal amounts of pre and post coarsen-
ing depend on the behavior of the problem at hand. Although we considered three different
problems exhibiting different types of behavior, due to space constraints we presented de-
tailed results only for the first problem, which has a solution involving a singularity advecting
out of a square domain. In this case, only about 10% precoarsening but approximately 40%
postcoarsening is optimal. While much adaptivity is needed near the singularity, refined el-
ements must be rapidly coarsened after the singularity leaves the domain in order to speed
convergence by reducing the number of elements. The second example consisted of a bump
function circulating around the domain. Since the bump function never leaves the domain, no
postcoarsening can be performed without increasing the error above acceptable limits. About
20% precoarsening is needed to coarsen elements in areas where previous refinement has
occurred due to the steep gradients of the bump function, but where refinement is no longer
needed since the bump has moved out of the area. Finally, in the case of a sine wave growing
linearly and then decaying exponentially, full postcoarsening is desirable due to the exponen-
tial reduction of error as the wave decays. Since this function involves no advection, little
to no precoarsening is needed, although it is acceptable up to about 17% of the total error.

B.J. Wilson and B.R. Carnes 13

F. 4.3. Time vs. Timestep

Beyond that, precoarsening merely increases computational time.
Thus, we recommend that parameter values for coarsening be determined by the nature

of the problem being studied. Solutions where the error tends to shift from place to place
benefit most from precoarsening, which coarsens old areas of high error so that new areas may
be refined. However, solutions which have diminishing error, for example due to parabolic
smoothing or decay, benefit more from postcoarsening, which trades an acceptable increase
in error for a mesh with fewer elements, reducing computational cost.

REFERENCES

[1] B. R. C, K. D. C, D. R. G., Encore user/theory manual, tech. rep., Sandia National Labora-
tories, 2008. forthcoming.

[2] H. C. E, Sierra framework for massively parallel adaptive multiphysics applications., tech. rep., Sandia
National Laboratories, 2004. SAND2004-6277C.

[3] P. M. G R. L. L, On the time-dependent solution of the incompressible navier-stokes equations in
two and three dimensions, in Recent Advances in Numerical Methods in Fluids, C. Taylor and K. Morgan,
eds., vol. 1, Pineridge Press Limited, 1980, ch. 2.

[4] P. N, S. R. S, M. M. H, H. K. M, D. R. N, Aria 1.5 : User manual, tech. rep., Sandia
National Laboratories, 2007. SAND2007-2734.

[5] V. T, Galerkin Finite Element Methods for Parabolic Problems, Springer-Verlag, 1997.

CSRI Summer Proceedings 2008 14

A SURVEY OF MODEL ORDER REDUCTION METHODS FOR LTI SYSTEMS IN
DESCRIPTOR FORM

RYAN NONG∗ AND HEIDI THORNQUIST†

Abstract. A survey of different model order reduction methods that are suitable for linear time invariant systems
in descriptor form is presented. These techniques are applied to a number of typical interconnect circuits to construct
corresponding reduced models. A comparison of the resulting models is documented. The reduced models are
then re-integrated back into larger circuits, and a transient simulation is performed to compare the original and
approximate time-domain responses and simulation time.

1. Introduction. While advances in manufacturing enable the fabrication of integrated
circuits containing tens-to-hundreds of millions of devices, the time-sensitive modeling and
simulation necessary to design these circuits pose a significant computational challenge.
When the integrated circuit has millions of devices, performing a full system simulation can
be infeasible. The principal reason for this is the time required for the nonlinear solver to
compute the solutions of large linearized systems during the simulation of these circuits.

Model order reduction (MOR) techniques attempt to produce low-dimensional systems
that capture the same response characteristics as the original systems while enabling sub-
stantial speedups in simulation time and resulting in much less storage requirements. While
model-order reduction is an active area of research, the techniques see limited use in com-
mercial Electrical Design Automation (EDA) tools.

In this paper, we present a survey of different model order reduction (MOR) methods
applied to linear circuits. The methods we are studying are suitable for linear time invariant
(LTI) systems in descriptor form, which are often the result of using the Modified Nodal Anal-
ysis (MNA) formulation. The algorithms for these methods are implemented and then applied
to a number of typical interconnect circuits to construct corresponding reduced models. An
assessment of how and in what situation each of the techniques is efficient in model order
reduction is performed. In addition, we also re-integrate the reduced systems back into larger
circuits and observe similar time-domain responses as the original circuit with significant
speedups in simulation times. The paper is organized as follows: In Section 2, four different
techniques (PRIMA [7], RKS [10], GSHSR [6] and IRKA [2]) from three different schemes
(moment matching, balanced truncation and optimal H2) are briefly presented. Numerical
analysis and results follow in Section 3. The paper concludes with a few final observations
and future work. Additional details about the algorithms and results are presented in a number
of appendices at the end of the paper.

In this paper, except when specified otherwise, upper case bold letters (A, B, etc.) denote
matrices, lower case bold letters (x, y, etc.) vectors, and non-bold or Greek letters scalars.
Script letters (A, E, etc.) denote special or structured matrices. Conjugate transpose is
denoted by A∗ and transpose by AT .

2. Methods. In this paper, we consider three different model order reduction schemes:
Moment matching, balanced truncation and optimalH2 reductions. In all of these approaches,
one essentially starts with the state space realization of the original LTI systemΣ ≡ (C,G,B,L)
as in

C dx
dt = −Gx(t) + Bu(t)

y(t) = LT x(t), (2.1)

∗CAAM Department, Rice University, ryannong@caam.rice.edu
†Electrical and Microsystems Modeling Dept., Sandia National Laboratories, hkthorn@sandia.gov

R. Nong and H. Thornquist 15

where C ∈ Rn×n, G ∈ Rn×n, B ∈ Rn×p and L ∈ Rn×p and x(t) is the state, u(t) the input and y(t)
the output of the system. Also, n is the size of the original system and p the number of inputs
(outputs). If p = 1, then (2.1) is referred to as a single-input-single-output (SISO) system
and, if p > 1, it is a multiple-input-multiple-output (MIMO) system.

For model order reduction, one constructs two projection matrices W ∈ Rn×k and V ∈
Rn×k such that WT V = Ik, where k is the desired size of the reduced system (k � n). The
reduced system is now Σ̂ ≡ (Ĉ, Ĝ, B̂, L̂) governed by the following set of first-order LTI
differential equations

Ĉ dx̂
dt = −Ĝx̂(t) + B̂u(t)

ŷ(t) = L̂T x̂(t),
(2.2)

where Ĉ = WT CV, Ĝ = WT GV, B̂ = WT B, L̂T = LT V. For more details, we refer the
readers to [1], [2] and the references therein.

The frequency input-output relationships of the original (2.1) and reduced (2.2) systems
are determined by their corresponding transfer functions:

H(s) = LT (sC +G)−1B,
Ĥ(s) = L̂T (sĈ + Ĝ)−1B̂. (2.3)

2.1. Integrating Reduced Models. Integrating the reduced model (2.2) into a larger
circuit requires an admittance matrix to be generated from the original circuit (2.1). The
admittance, or y-parameter, matrix provides the relationship between the input voltage and
output current at any port, input or output node, of the original circuit. It is obtained by at-
taching a voltage source to every port of the original circuit so that every port becomes both an
input and output node. The state space realization (C,G,B,L) of this modified circuit is then
used, instead of the original, to generate the reduced model. As a result of this requirement
for integration, even if the original circuit is SISO, the modified circuit used to generate the
reduced model is always MIMO. This constraint will be taken into account during the presen-
tation of the model order reduction schemes. For more details on reduced model integration,
we refer the readers to [7] and the references therein.

2.2. Moment Matching Scheme. Consider the Laurent expansions of the transfer func-
tions (2.3) of the original and reduced systems about a given point s0 ∈ C as follows:

H(s0 + σ) = η0 + η1σ + η2σ + . . . ,

Ĥ(s0 + σ) = η̂0 + η̂1σ + η̂2σ + . . . ,

where ηi and η̂i are the moments of Σ and Σ̂ at s0 respectively. The moment matching based
methods aim to compute a reduced system Σ̂, with a certain number of moments matching
those of the original system Σ, i.e.,

ηi = η̂i, i = 1, . . . , l,

for some l � n. Note that l does not necessarily equal k/p. In this paper, we consider the
following two moment matching techniques: PRIMA and RKS. Since these techniques can
be implemented iteratively, they are quite numerically efficient. However, global error bounds
are not available.

2.2.1. PRIMA. The Passive Reduced-Order Interconnect Macromodeling Algorithm
(PRIMA) is proposed by Odabasioglu et al. [7] in 1998. The pseudocode for this algo-
rithm can be found as Algorithm 1 in Appendix A. The algorithm utilizes the block Arnoldi

16 A Survey of Model Order Reduction Methods for LTI Systems in Descriptor Form

procedure. Note that for PRIMA, W = V. The resulting reduced system Σ̂ is proven to be
passive and hence, stable. The number of matched moments is equal to the desired size of the
reduced system Σ̂ divided by the number of inputs, i.e., l = k/p. While no global error bound
is available, Heres [4] provides some heuristic considerations for error control of PRIMA in
his Ph.D. thesis. A short summary of the stopping criteria can be found in Appendix B. How-
ever, based on our numerical experiments, the quality of the error estimation depends very
highly on the interpolation points and hence, it is local.

2.2.2. RKS. The Rational Krylov Subspace (RKS) method for model-order reduction
is proposed by Skoogh [10] and is based on the rational Krylov algorithm by Ruhe [9]. The
pseudocode for this algorithm can be found as Algorithm 2 in Appendix A. The rational
Krylov algorithm is a generalization of the standard Arnoldi and Lanczos methods. The
advantage of the rational Krylov algorithm is that it provides the flexibility of choosing a
set of m different interpolation points (m ≤ k/p). The reduced system Σ̂ matches l = k/p
moments of the original system Σ at these interpolation points. Reduced models resulting
from RKS are not guaranteed to be passive and stable, and also no global error bound is
available.

2.3. Balanced Truncation Reduction. The balanced truncation reduction is classified
as an SVD-based scheme. The scheme constructs the reduced model Σ̂ based on the Hankel
singular values of the original system Σ. For the LTI system Σ as in (2.1), the Hankel singular
values can be computed by solving the following two generalized Lyapunov equations for the
system Grammians P and Q:

GPCT + CPGT = BBT

GTQC + CTQG = LLT .
(2.4)

Then the Hankel singular values of Σ are σi(Σ) =
√
λi(PQ), i = 1, . . . , n, the square roots

of the eigenvalues of the product of the system Grammians. The projection matrices can be
computed using the system Grammians and the reduced system Σ̂ results balanced. In addi-
tion, the reduced system Σ̂ has the following guaranteed properties: (a) stability is preserved,
and (b) global error bounds exist in Hankel-norm approximation and they can be computed
as follows:

σk+1 ≤ ‖Σ − Σ̂‖∞ ≤ 2(σk+1 + · · · + σn),

where k is the desired size of the reduced system Σ̂.
Despite the advantageous properties, MOR via balanced truncation is not very attrac-

tive due to its computational requirements. The reason is in directly solving the two Lya-
punov equations (2.4); as n gets large, the complexity in computation and storage required
is prohibitive. A number of efforts have been made to solve the Lyapunov equations itera-
tively, which we will not examine in this survey. For this scheme, we consider the following
technique: GSHSR. This technique is a generalization of balanced truncation model-order
reduction to descriptor systems.

2.3.1. GSHSR. The Generalized Schur-Hammarling Square Root (GSHSR) method is
proposed by Mehrmann and Stykel [6]. A summary of the algorithm can be found as Algo-
rithm 3 in Appendix A. The essence of the algorithm is to decouple the descriptor system
(2.1) into its proper and improper portions and then reduce each of the portions separately.
In addition to truncating the states that are difficult to control and/or to observe, GSHSR
also removes those that are uncontrollable and/or unobservable. The algorithm utilizes a col-
lection of solvers for (generalized) Lyapunov and (generalized) Sylvester matrix equations.

R. Nong and H. Thornquist 17

Specifically, as suggested in [6], to solve the generalized Sylvester equations (A.1), we use
the generalized Schur method by Kågström and Westin [5]. The upper triangular Cholesky
factors R f , PT

f , R∞ and PT
∞ of the solutions of the generalized Lyapunov equations (A.2) can

be determined without computing the solutions themselves by using the generalized Ham-
marling method by Hammarling [3] and Penzl [8].

As mentioned above, GSHSR is a balanced truncation method. Therefore, there exist
global error bounds for the approximation Σ̂. Since the error bounds are in terms of the
Hankel singular values of Σ, the quality of the approximation depends on the decay of the
Hankel singular values. In other words, GSHSR is effective in model order reduction if the
Hankel singular values of Σ decay rapidly. In fact, this is a common feature of all of the
balanced truncation techniques.

2.4. Optimal H2. The optimal H2 is classified as an SVD-based scheme in [1]. The
reason is that it solves the following model order reduction problem: Given a stable system
Σ, an approximation Σ̂ is sought to satisfy the following conditions:

σk+1(Σ) ≤ ‖Σ − Σ̂‖H2 ≤ ε < σk(Σ).

Therefore, the construction of the reduced system Σ̂ in this framework can mimic the proce-
dure as presented in Section 2.3. However, in 2008, Gugercin et al. [2] observe the equiv-
alence of the local optimality conditions for the model order reduction problem in the two
different frameworks: interpolation-based and Lyapunov-based. This result gives birth to
a new direction using the interpolation properties to construct an approximation Σ̂ without
solving the two Lyapunov equations. In this paper, we consider IRKA, a technique that takes
advantage of this result.

2.4.1. IRKA. The Iterative Rational Krylov Algorithm (IRKA) is proposed by Gugercin
et al. [2]. The original algorithm as shown in [2] is proposed to work with non-descriptor
systems. The pseudocode for a generalization of the original algorithm to descriptor systems
(2.1) can be found as Algorithm 4 in Appendix A. As mentioned above, by using the in-
terpolation properties, constructing an approximation Σ̂ can be done iteratively and without
solving the two Lyapunov equations.

Despite these computational advantages, IRKA does not guarantee stability for the ap-
proximation Σ̂. The success of the iteration depends on the convergence of shifts, which
is unpredictable and depends on initial guesses. In addition, for MIMO descriptor systems
where ill-conditioned generalized eigenvalue problems have to be solved at each iteration,
shifts at infinity have to be taken care of. Essentially, one needs to remove the subspace cor-
responding to the shifts at infinity from the computation. Our current approach is to identify
the unwanted subspace at each iteration and then replace it by some random subspace of the
same dimension. This subspace replacement approach retains the size of the successive re-
duced systems. However, the collection of shifts keeps getting polluted by the replacements,
which makes it very hard to achieve any convergence in shifts.

One resolution may be to remove the unwanted subspace without replacement. A draw-
back of this subspace removal approach is that the sizes of the successive reduced systems get
smaller and smaller, reducing the system to an unacceptable size before any convergence of
shifts can be observed. Another potential approach to resolving the issue of shifts at infinity
may be to decouple the proper and improper portions of the descriptor system (2.1) similar to
the approach in GSHSR and then reduce each of the portions separately.

With the current implementation with the subspace replacement approach, the IRKA
algorithm for MIMO descriptor systems exhibits very unpredictable behavior with regards to
the convergence of shifts, stability and formation of reduced systems.

18 A Survey of Model Order Reduction Methods for LTI Systems in Descriptor Form

3. Numerical Analysis and Results. In this section, we consider three different inter-
connect networks: an RC ladder, an RLC ladder, and an RLC mesh. The techniques presented
in Section 2 are applied to these systems to construct reduced models. We compare the fre-
quency responses of the original and reduced models and also demonstrate that by integrating
the reduced models instead of the original models into larger circuits, we obtain similar tran-
sient simulation responses in much less time.

3.1. Test Models. We study three different RC/RLC networks, which are typically used
to model the interconnects between devices on electronic chips. The descriptions of the
models are as follows:

RC Ladder Circuit
The SISO RC ladder circuit shown in Figure 3.1 is excited by a voltage source Vs and has

100 blocks of RC cells, i.e., q = 100. The modified nodal analysis (MNA) formulation results
in a SISO LTI system of size n = 102. The numerical values of the resistor and capacitor are
Ri = 10Ω and Ci = 1pF, for i = 1, . . . , q.

Vs C1 C2 Cq
I1 I2 Iq

 Vin=V1 R1 V2 R2 V3 Rq Vq+1=Vout

F. 3.1. SISO RC ladder circuit.

The MIMO RC ladder circuit model is obtained by replacing the last capacitor Cq in
the SISO RC ladder circuit (Figure 3.1) by another voltage source Vs. Per the discussion in
Section 2, this is the modified version of the original SISO RC ladder circuit that will be used
for integration. While symmetry does not make it necessary to distinguish the two ports, for
consistency and clarification we call the input port (Vin) of the original RC ladder 1 and the
output port (Vout) 2. The MNA formulation of this circuit results in a MIMO LTI system of
size n = 103. The numerical values of the resistor and capacitor are the same as for the SISO
RC ladder circuit.

RLC Ladder Circuit
The SISO RLC ladder circuit model shown in Figure 3.2 is excited by a voltage source

Vs and has 100 blocks of RLC cells, i.e., q = 100. The MNA formulation of this circuit
results in a SISO LTI system of size n = 302. The numerical values for the resistor, inductor
and capacitor are Ri = 0.2Ω, Li = 1nH and Ci = 0.5pF, for i = 1, . . . , q.

I1 I2 Iq
Vs C1 C2 Cq

Vin=V1 R1 V2 L1 V3 R2 V4 L2 V5 Rq V2q Lq V2q+1=Vout

F. 3.2. SISO RLC ladder circuit.

The MIMO RLC ladder circuit model is obtained by replacing the last capacitor Cq in
the SISO RLC ladder circuit (Figure 3.2) by another voltage source Vs. Per the discussion
in Section 2, this is the modified version of the original SISO RLC ladder circuit that will be
used for integration. We call the input port (Vin) 1 and the output port (Vout) 2. The MNA

R. Nong and H. Thornquist 19

formulation of this circuit results in a MIMO LTI system of size n = 303. The numerical
values of the resistor, inductor and capacitor are the same as for the SISO RLC ladder circuit.

RLC Ladder Mesh
The MIMO RLC ladder mesh has two input ports and two output ports as depicted in

Figure 3.3. Each of the RLC blocks consists of 30 RLC cells similar to the ladder in Figure
3.2. The MNA formulation of this circuit results in a MIMO LTI system of size n = 1083.
The numerical values of all the resistors, inductors and capacitors are R = 0.1Ω, L = 0.15nH
and C = 0.5pF, respectively.

RLC RLC

R
L

C
R

L
C

RLC

RLC

RLC

R
L

C

RLC

R
L

C

R
L

C
R

L
C

Vs

Vs

In1

In2 Out3

Out4

R

R

F. 3.3. MIMO RLC ladder grid.

3.2. Numerical Results. We first present a frequency response comparison of the re-
duced systems computed using the four previously discussed techniques. This is followed by
a comparison of the time-domain responses of a larger circuit that includes either the original
interconnect model or a reduced model of the interconnect.

Frequency Responses of SISO RC Ladder Circuit
With the original system’s size of n = 102, we construct a reduced system of size k = 10

using each of the four presented techniques. The frequency responses between the input
at the voltage source and the output at the final node of the original and reduced systems
are shown in Figure 3.4. From these plots we see that the frequency responses of the reduced
systems computed by IRKA and GSHSR are the closest to those of the original. Figure 3.4(c)
presents the rapid decay of the Hankel singular values of the system, which illustrates why the
reduced system resulting from GSHSR approximates the original system very well. Figure
3.4(d) shows the convergence history of IRKA shifts. Recall that out of the four techniques,
PRIMA and GSHSR are the only two that guarantee stable reduced systems. For this circuit,
the IRKA shifts converge and it is observed that the resulting reduced system is stable.

Frequency Responses of SISO RLC Ladder Circuit
With the original system’s size of n = 302, we construct a reduced system of size k = 60

using each of the four techniques. The frequency responses between the input at the voltage
source and the output at the final node of the original and reduced systems are shown in Figure
3.5. We see that the frequency responses of the resulting reduced systems do not match the
original very well in the high range of frequency, especially in magnitude. The slow decay of
the Hankel singular values illustrated in Figure 3.5(c) explains why GSHSR does not perform
well on this RLC ladder circuit. There is still a lot of information about the original system
left out when we construct a reduced system using only the 60 largest Hankel singular values.
For a thorough study on how the slow decay in the Hankel singular values of the system

20 A Survey of Model Order Reduction Methods for LTI Systems in Descriptor Form

10
0

10
2

10
4

10
6

10
8

10
10

−1800

−1600

−1400

−1200

−1000

−800

−600

−400

−200

0

200

frequency (Hz)

m
ag

 (
dB

)
of

 H
(s

)

RCladder100: Reduced Size −− 10: Magnitude

original
PRIMA
RKS
GSHSR
IRKA

10
0

10
2

10
4

10
6

10
8

10
10

−200

−150

−100

−50

0

50

100

150

200

frequency (Hz)

ph
as

e
(d

eg
re

e)
 o

f H
(s

)

RCladder100: Reduced Size −− 10: Phase

original
PRIMA
RKS
GSHSR
IRKA

(a) (b)

0 20 40 60 80 100
10

−60

10
−50

10
−40

10
−30

10
−20

10
−10

10
0

m
ag

ni
tu

de

RCladder100: Reduced Size −− 10: Singular Value Decay

original
reduced

0 2 4 6 8 10 12 14 16
10

−10

10
−5

10
0

10
5

10
10

10
15

iterations

re
la

tiv
e

er
ro

r

RCladder100: Reduced Size −− 10: IRKA −− Convergence History of Shifts

(c) (d)

F. 3.4. SISO RC ladder circuit: Magnitudes and phases of the frequency responses of the original (n = 102)
and reduced (k = 10) systems are compared in (a) and (b), respectively. Part (c) shows the Hankel singular value
decay and (d) shows the convergence history of IRKA shifts.

affects the quality of the reduced system computed by GSHSR, see Appendix C.

Frequency Responses of MIMO RC Ladder Circuit

For this circuit, where the original system size is n = 103, we construct a reduced system
of size k = 20 using each of the four presented techniques. Figures 3.6(a) and (b) show the
frequency responses in magnitude and phase of the original and reduced systems between In-
put 1 and Output 2. Due to the rapid decay in the Hankel singular values observed in Figure
3.6(c), the reduced system computed using GSHSR again appears to be the best approxima-
tion. As mentioned in Section 2, IRKA does not work well for ill-conditioned MIMO systems
and Figure 3.6(d) illustrates that no convergence in shifts is obtained for this system.

Frequency Responses of MIMO RLC Ladder Circuit

For this circuit, where the original system size is n = 303, we construct a reduced system
of size k = 80 using each of the four presented techniques. Figures 3.7(a) and (b) show the
frequency responses in magnitude and phase of the original and reduced systems between
Input 2 and Output 1. In this case, the reduced systems computed by PRIMA and RKS
appear to be good approximations to the original system. The slow decay in the Hankel
singular values observed in Figure 3.7(c) prevents GSHSR from approximating the original
system well for this small of a reduced model. A similar study on how the slow decay in the
Hankel singular values of the system affects the quality of the reduced system computed by
GSHSR can be found in Appendix C. Again, IRKA does not work well for ill-conditioned
MIMO systems and Figure 3.7(d) illustrates that no convergence in shifts is obtained for this
system.

R. Nong and H. Thornquist 21

10
0

10
2

10
4

10
6

10
8

10
10

−100

−80

−60

−40

−20

0

20

40

frequency (Hz)

m
ag

 (
dB

)
of

 H
(s

)

RLCladder100: Reduced Size −− 60: Magnitude

original
PRIMA
RKS
GSHSR
IRKA

10
0

10
2

10
4

10
6

10
8

10
10

−200

−150

−100

−50

0

50

100

150

200

frequency (Hz)

ph
as

e
(d

eg
re

e)
 o

f H
(s

)

RLCladder100: Reduced Size −− 60: Phase

original
PRIMA
RKS
GSHSR
IRKA

(a) (b)

0 50 100 150 200
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

m
ag

ni
tu

de

RLCladder100: Reduced Size −− 60: Singular Value Decay

original
reduced

0 5 10 15 20 25 30 35 40
10

−10

10
−5

10
0

10
5

10
10

10
15

10
20

iterations

re
la

tiv
e

er
ro

r

RLCladder100: Reduced Size −− 60: IRKA −− Convergence History of Shifts

(c) (d)

F. 3.5. SISO RLC ladder circuit: Magnitudes and phases of the frequency responses of the original (n = 302)
and reduced (k = 60) systems are compared in (a) and (b), respectively. Part (c) shows the Hankel singular value
decay and (d) shows the convergence history of IRKA shifts.

10
0

10
2

10
4

10
6

10
8

10
10

−1800

−1600

−1400

−1200

−1000

−800

−600

−400

−200

0

frequency (Hz)

m
ag

 (
dB

)
of

 H
(s

)

RCladder100MIMO: Reduced Size −− 20: Magnitude12

original
MPRIMA
MRKS
MGSHSR
MIRKA

10
0

10
2

10
4

10
6

10
8

10
10

−200

−150

−100

−50

0

50

100

150

200

frequency (Hz)

ph
as

e
(d

eg
re

e)
 o

f H
(s

)

RCladder100MIMO: Reduced Size −− 20: Phase12

original
MPRIMA
MRKS
MGSHSR
MIRKA

(a) (b)

0 20 40 60 80 100
10

−50

10
−40

10
−30

10
−20

10
−10

10
0

m
ag

ni
tu

de

RCladder100MIMO: Reduced Size −− 20: Singular Value Decay

original
reduced

0 50 100 150 200
10

−2

10
0

10
2

10
4

10
6

10
8

10
10

10
12

iterations

re
la

tiv
e

er
ro

r

RCladder100MIMO: Reduced Size −− 20: MIRKA −− Convergence History of Shifts

(c) (d)

F. 3.6. MIMO RC ladder circuit: The (1,2)-magnitudes and phases of the frequency responses of the original
(n = 103) and reduced (k = 20) systems are compared in (a) and (b), respectively. Part (c) shows the fast decay of
the Hankel singular values and (d) shows the lack of convergence in the MIRKA shifts.

22 A Survey of Model Order Reduction Methods for LTI Systems in Descriptor Form

10
0

10
2

10
4

10
6

10
8

10
10

−180

−160

−140

−120

−100

−80

−60

−40

frequency (Hz)

m
ag

 (
dB

)
of

 H
(s

)

RLCladder100MIMO: Reduced Size −− 80: Magnitude21

original
MPRIMA
MRKS
MGSHSR
MIRKA

10
0

10
2

10
4

10
6

10
8

10
10

−150

−100

−50

0

50

100

150

200

frequency (Hz)

ph
as

e
(d

eg
re

e)
 o

f H
(s

)

RLCladder100MIMO: Reduced Size −− 80: Phase21

original
MPRIMA
MRKS
MGSHSR
MIRKA

(a) (b)

0 50 100 150 200
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

m
ag

ni
tu

de

RLCladder100MIMO: Reduced Size −− 80: Singular Value Decay

original
reduced

0 50 100 150 200
10

−2

10
0

10
2

10
4

10
6

10
8

10
10

10
12

10
14

iterations

re
la

tiv
e

er
ro

r

RLCladder100MIMO: Reduced Size −− 80: MIRKA −− Convergence History of Shifts

(c) (d)

F. 3.7. MIMO RLC ladder circuit: The (2,1)-magnitudes and phases of the frequency responses of the original
(n = 303) and reduced (k = 80) systems are compared in (a) and (b), respectively. Part (c) shows the slow decay of
the Hankel singular values and (d) shows the lack of convergence in the MIRKA shifts.

Frequency Responses of MIMO RLC Ladder Mesh

For this circuit, where the original system size is n = 1083, we construct a reduced
system of size k = 60. Since IRKA is very unstable for this system, we only present the
results of the remaining three techniques. Figures 3.8(a) and (b) show the frequency responses
in magnitude and phase of the original and reduced systems between Input 1 and Output
3. In this case, the reduced systems computed using PRIMA and RKS appear to be very
good approximations to the original system despite their relatively small size. Similar to the
SISO and MIMO RLC ladder circuits, the slow decay in the Hankel singular values prevents
GSHSR from resulting in a reduced system of size k = 60 that well approximates the original
system. For a study on how the slow decay in the Hankel singular values of the system affects
the quality of the reduced system computed by GSHSR for this system, see Appendix C.

10
0

10
2

10
4

10
6

10
8

10
10

−140

−120

−100

−80

−60

−40

−20

frequency (Hz)

m
ag

 (
dB

)
of

 H
(s

)

RLCmeshline2: Reduced Size −− 60: Magnitude13

original
MPRIMA
MRKS
MGSHSR

10
0

10
2

10
4

10
6

10
8

10
10

−200

−150

−100

−50

0

50

100

150

200

frequency (Hz)

ph
as

e
(d

eg
re

e)
 o

f H
(s

)

RLCmeshline2: Reduced Size −− 60: Phase13

original
MPRIMA
MRKS
MGSHSR

(a) (b)

F. 3.8. MIMO RLC ladder mesh: The (1,3)-magnitudes and phases of the frequency responses of the original
(n = 1083) and reduced (k = 60) systems are compared in (a) and (b), respectively.

R. Nong and H. Thornquist 23

Transient Simulations

In the following, we present a comparison of the time-domain responses of a larger circuit
that includes an inverter and either the original lossy transmission line or a reduced model of
the interconnect. The circuit can be seen in Figure 3.9.

RLC interconnect

Vin Vout

F. 3.9. A simple interconnect circuit with an inverter.

The resulting transient DAE simulations are shown in Figures 3.10 and 3.11 for the
circuit in Figure 3.9 with the RC ladder and RLC ladder interconnect, respectively. The
time window for the simulations is from 0 to 50 ns. For the circuit with the RC ladder
interconnect, the approximations are quite indistinguishable from the exact response. (This
agrees well with the results in the frequency responses in Figure 3.6.) The transient simulation
time for the inverter circuit with a reduced interconnect model is reduced by at least one
order of magnitude from the original. For the circuit with the RLC ladder interconnect,
the approximations associated with PRIMA and RKS are indistinguishable from the exact
response, while those associated with GSHSR and IRKA do not quite capture the behavior
of the response of the original model. (This also agrees with the results in the frequency
responses in Figure 3.7.) Similarly, the transient simulation time for the inverter circuit with
a reduced interconnect model is reduced by at least one order of magnitude from the original.

For the RLC ladder mesh in Figure 3.3, the setup is similar to that in Figure 3.9. The
inputs are connected to CMOS inverters. One of the drivers is switching while the other
is quiet. We present the resulting transient DAE simulation observed at Output 3 in Figure
3.12. The simulation observed at Output 4 is the same. The time window for the simulation is
from 0 to 100 ns. The approximations associated with PRIMA and RKS are indistinguishable
from the exact response, while that associated with GSHSR do not capture the behavior of
the response of the original model. The transient simulation time for the inverter circuit with
a reduced interconnect model is reduced significantly by at least 30 times from the original.

0 1 2 3 4 5

x 10
−8

−1

0

1

2

3

4

5
Transient DAE Integration for RCladder100

t(s)

V
in

(V
)

an
d

V
ou

t(
V

)

Vin
original
MPRIMA
MRKS
MGSHSR
MIRKA

Simulation Time
Model Time(s)

Original 303.725
PRIMA 23.455

RKS 25.923
GSHSR 19.915
IRKA 31.374

F. 3.10. Inverter + RC ladder circuit: Comparison of transient simulation output and time for the circuit in
Figure 3.9. The time window for the simulation is from 0 to 50 ns.

24 A Survey of Model Order Reduction Methods for LTI Systems in Descriptor Form

0 1 2 3 4 5

x 10
−8

−1

0

1

2

3

4

5

6
Transient DAE Integration for RLCladder100

t(s)

V
in

(V
)

an
d

V
ou

t(
V

)

Vin
original
MPRIMA
MRKS
MGSHSR
MIRKA

Simulation Time
Model Time(s)

Original 441.537
PRIMA 44.941

RKS 32.122
GSHSR 31.902
IRKA 42.473

F. 3.11. Inverter + RLC ladder circuit: Comparison of transient simulation output and time for the circuit in
Figure 3.9. The time window for the simulation is from 0 to 50 ns.

0 0.2 0.4 0.6 0.8 1

x 10
−7

−1

0

1

2

3

4

5
Transient DAE Integration for RLCmeshline

t(s)

V
in

(V
)

an
d

V
ou

t3
(V

)

Vin
original
MPRIMA
MRKS
MGSHSR

Simulation Time
Model Time(s)

Original 1055.82
PRIMA 31.60

RKS 20.84
GSHSR 28.19

F. 3.12. Inverter + RLC ladder mesh: Comparison of transient simulation output and time for the circuit in
Figure 3.9. The time window for the simulation is from 0 to 100 ns.

4. Conclusions. With the analysis and numerical experiments, the following observa-
tions and suggestions are made. Given an LTI system, its Hankel singular values should be
computed and studied. If a rapid decay in the Hankel singular values is observed, balanced
truncation reduction techniques (e.g., GSHSR) should be the methods of choice to construct
reduced systems. The reasons are in the guarantee of stability for the reduced systems and
the availability of a priori global error bounds. As mentioned before, a number of efforts
have been made in solving the associated (generalized) Lyapunov and (generalized) Sylvester
equations iteratively. Thus, in the case of large-scale systems, one should take advantage of
these iterative algorithms for the feasibility of solving these equations.

Optimal H2 reduction is locally equivalent in the interpolation-based and Lyapunov-
based frameworks, and hence, IRKA by using interpolation conditions bypasses the problem
of solving the associated Lyapunov equations. The technique is then efficient for large-scale
systems by taking advantage of Krylov subspace methods. However, IRKA’s unpredictabil-
ity of shift convergence and issue of shifts at infinity for ill-conditioned descriptor systems
remain open questions. In addition, since the equivalence of the optimality conditions for
the reduction problem in the two frameworks is local, IRKA does not necessarily inherent
the availability of a priori global error bounds which may result from the properties in the
Lyapunov-based framework.

If no rapid decay in the Hankel singular values is observed, then balanced truncation tech-
niques are not good choices when significantly-small-size reduced models are desired. Even
though the resulting reduced systems are guaranteed to be stable, they do not approximate
the original system well. In this case, techniques from other schemes should be considered.
PRIMA would be a good choice as it guarantees passivity and hence, stability for the reduced

R. Nong and H. Thornquist 25

systems. Note that these guaranteed properties are only for systems resulting from the MNA
formulation. One drawback of PRIMA is that it does not have a priori global error bounds.
However, as mentioned above, local error estimation can be achieved during the construction
of reduced systems.

REFERENCES

[1] A. C. A, D. C. S, S. G, A survey of model reduction methods for large-scale
systems, Structured Matrices in Mathematics, Computer Science and Engineering, Vol. I. Comtemporaty
Mathematics Series, 280 (2001), pp. 193–219.

[2] S. G, A. C. A, C. B, H2 model reduction for large-scale linear dynamical systems,
SIAM Journals on Matrix Analysis and Applications, 30 (2008), pp. 609–638.

[3] S. J. H, Numerical solution of the stable, non-negative definite Lyapunov equation, IMA Journal of
Numerical Analysis, 2 (1982), pp. 303–323.

[4] P. J. H, Robust and Efficient Krylov Subspace Methods for Model Order Reduction, PhD thesis, Eindhoven
University of Technology, 2005.

[5] B. K̈ L. W, Generalized Schur methods with condition estimators for solving the generalized
Sylvester equation, IEEE Transactions on Automatic Control, 34 (1989), pp. 745–751.

[6] V. M T. S, Balanced truncation model reduction for large-scale systems in descriptor form,
Dimension Reduction of Large-Scale Systems, Lect. Notes Comput. Sci. Eng., 45 (2005), pp. 83–115.

[7] A. O, M. C, L. T. P, PRIMA: Passive reduced-order interconnect macromodeling
algorithm, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 17 (1998),
pp. 645–654.

[8] T. P, Numerical solution of generalized Lyapunov equations, Advances in Computational Mathematics,
8 (1998), pp. 33–48.

[9] A. R, Rational Krylov algorithms for nonsymmetric eigenvalue problems. ii. matrix pairs, Linear Algebra
and Its Applications, 197, 198 (1994), pp. 283–295.

[10] D. S, A rational Krylov method for model order reduction, Blåserien, 47 (1998).

26 A Survey of Model Order Reduction Methods for LTI Systems in Descriptor Form

Appendix

A. Model Order Reduction Algorithms. A 1. PRIMA Method
1. Obtain an expansion point s0 and the state space realization of the original system
Σ ≡ (C,G,B,L).

2. Formally set A = −(G + s0C)−1C and R = (G + s0C)−1B.
3. Use a block Krylov subspace method to construct a unitary projection matrix V such

that V = [v1 v2 . . . vk], where span(V) = Kk(A,R).
4. Compute Ĉ = VT CV, Ĝ = VT GV, B̂ = VT B and L̂T = LT V to obtain the state

space realization of the reduced system Σ̂ ≡ (Ĉ, Ĝ, B̂, L̂).

A 2. RKS Method
1. Select a set of m expansion points s j whose frequencies are f j such that p

∑m
j=1 f j =

k, where p and k are the number of inputs of Σ and the desired size of the reduced
system Σ̂, respectively. In addition, obtain the state space realization of the original
system Σ ≡ (C,G,B,L).

2. Compute [Q,R] = (G + s1C)−1B, the QR factorization.
3. With Q being the initial block, use the block rational Krylov algorithm to construct

the three matrices V ∈ Rn×(k+p), H ∈ R(k+p)×(k+p) and K ∈ R(k+p)×(k+p) such that
GVH = CVK.

4. Let Ĉ = H(1 : k, 1 : k) and Ĝ = K(1 : k, 1 : k) and compute

L̂T = LT V(:, 1 : k)[K(1 : k, 1 : k) + s1H(1 : k, 1 : k)]
and B̂ = E1R,

where E1 ∈ R
n×p with an identity matrix in its upper p × p block and zeros every-

where else. The resulting reduced system is Σ̂ ≡ (Ĉ, Ĝ, B̂, L̂).

A 3. Generalized Schur-Hammarling Square Root Method
1. Obtain the state space realization of the original system Σ ≡ (C,G,B,L).
2. Compute the generalized Schur form

C = V
[

C f Cu

0 C∞

]
UT and G = V

[
G f Gu

0 G∞

]
UT ,

where U and V are orthogonal, C f upper triangular nonsingular, C∞ upper trian-
gular nilpotent, G f upper quasi-triangular and G∞ upper triangular nonsingular.

3. Compute the matrices and then partition them conformally with respect to C and G
as follows

VT B =
[

Bu

B∞

]
and LT U =

[
LT

f LT
u

]
.

4. Solve the systems of generalized Sylvester equations for Y and Z

C f Y − ZC∞ = −Cu,
G f Y − ZG∞ = −Gu.

(A.1)

5. Compute the Cholesky factors R f , P f , R∞ and P∞ of the solutions Xpc = R f RT
f ,

R. Nong and H. Thornquist 27

Xpo = P f PT
f , Xic = R∞RT

∞ and Xio = P∞PT
∞ of the generalized Lyapunov equations

C f XpcGT
f +G f XpcCT

f = (Bu − ZB∞)(Bu − ZB∞)T ,

CT
f XpoG f +GT

f XpcC f = L f LT
f ,

G∞XicGT
∞ − C∞XicCT

∞ = B∞BT
∞,

GT
∞XioG∞ − CT

∞XioC∞ = (YT L f + Lu)(YT L f + Lu)T .

(A.2)

6. Compute the skinny singular value decompositions

PT
f C f R f =

[
U1 U2

] [Σ1
Σ2

] [
V1 V2

]
,

and PT
∞(−G∞)R∞ = U3Θ3VT

3 ,

where
[

U1 U2

]
,
[

V1 V2

]
, U3 and V3 have orthonormal columns, Σ1 =

diag(ζ1, . . . , ζl f), Σ2 = diag(ζl f+1, . . . , ζr),Θ3 = diag(θ1, . . . θl∞) with r = rank(PT
f C f R f),

l∞ = rank(PT
∞(−G∞)R∞) and l f is the desired size of the proper portion of the re-

duced system Σ̂.
7. Compute W f = P f U1Σ

−1/2
1 , W∞ = P∞U3Θ

−1/2
3 , T f = R f V1Σ

−1/2
1 and T∞ =

R∞V3Θ
−1/2
3 .

8. Compute the reduced-order system Σ̂ ≡ (Ĉ, Ĝ, B̂, L̂) as follows

Ĉ =
[

Il f 0
0 WT

∞C∞T∞

]
, Ĝ =

[
WT

f G f T f 0
0 −Il∞

]
,

B̂ =
[

WT
f (Bu − ZB∞)

WT
∞B∞

]
, L̂T =

[
LT

f T f (LT
f Y + LT

u)T∞
]
.

A 4. IRKA Method for SISO Systems
1. Make an initial selection of shiftsσi for i = 1, . . . , k that is closed under conjugation,

where k is the desized size of the reduced system Σ̂. In addition, fix a convergence
tolerance tol.

2. Construct Vk and Wk so that

R(Vk) = span{(σ1C +G)−1B, . . . , (σkC +G)−1B}
R(Wk) = span{(σ1CT +GT)−1L, . . . , (σkCT +GT)−1L}.

3. while (relative change in {σi} > tol)
(a) Ck = (WT

k Vk)−1WT
k CVk

(b) Gk = (WT
k Vk)−1WT

k GVk

(c) Assign σi ← λi(Gk,Ck) for i = 1, . . . , k.
(d) Update Vk and Wk so that

R(Vk) = span{(σ1C +G)−1B, . . . , (σkC +G)−1B}
R(Wk) = span{(σ1CT +GT)−1L, . . . , (σkCT +GT)−1L}.

4. Compute Ĉ = (WT
k Vk)−1WT

k CVk, Ĝ = (WT
k Vk)−1WT

k GVk, B̂ = (WT
k Vk)−1WT

k B
and L̂T = LT Vk to obtain the state space realization of the reduced system Σ̂ ≡
(Ĉ, Ĝ, B̂, L̂).

28 A Survey of Model Order Reduction Methods for LTI Systems in Descriptor Form

As suggested in [2], the algorithm can be extended for MIMO systems as follows: In
Algorithm 4, replace

(σiC +G)−1B and (σiCT +GT)−1L

respectively by

(σiC +G)−1Bbi and (σiCT +GT)−1Lli,

with

bT
i = yT

i Bk and li = LT
k xi,

where

−Gkxi = Ckxiλi, −yT
i Gk = λiyT

i Ck and yT
i xi = 1,

and (Ck,Gk,Bk,Lk) is the reduced-order system at each step. The idea is that instead of
interpolating G(s), the transfer function of the original system Σ, at the mirror images of the
poles of Ĝ(s), the transfer function of the reduced system Σ̂, as in the SISO case, Ĝ(s) for the
MIMO case interpolates G(s) tangentially at the mirror images of the poles of Ĝ(s).

B. Error Control for PRIMA. The following is a short summary of the discussion on
error control for PRIMA in [4]. Consider an original LTI system Σ ≡ (C,G,B,L) as in (2.1)
and its reduced model Σ̂ ≡ (Ĉ, Ĝ, B̂, L̂) as in (2.2), which results from PRIMA as shown in
Algorithm 1 in Appendix A. Also as mentioned in Section 2.2, the corresponding transfer
functions are

H(s) = LT (sC +G)−1B,
Ĥ(s) = L̂T (sĈ + Ĝ)−1B̂.

For a choice of the expansion point s0, the transfer function H(s) is well approximated in the
range from s = 0 to s0. Choose equally divided points in the interval as in

s0

4
,

s0

2
,

3s0

4
, s0.

Then the error e is defined as follows:

e =

∥∥∥∥∑4
k=1 H

(
4s0
k

)
− Ĥ

(
4s0
k

)∥∥∥∥
∞∥∥∥∥∑4

k=1 Ĥ
(

4s0
k

)∥∥∥∥
∞

. (B.1)

Since H(s) is quite expensive to compute if the size of the original system Σ is large, the error
e in (B.1) can be approximated as follows:

eappr =

∥∥∥∥∑4
k=1 Ĥq

(
4s0
k

)
− Ĥq−1

(
4s0
k

)∥∥∥∥
∞∥∥∥∥∑4

k=1 Ĥq

(
4s0
k

)∥∥∥∥
∞

, (B.2)

where Ĥq−1(s) and Ĥq(s) are the transfer functions of the two reduced systems Σ̂q−1 and Σ̂q

of size k − p and k, respectively.

R. Nong and H. Thornquist 29

C. GSHSR on Systems with Slow Decay in Hankel Singular Values. In this section,
we present a thorough study on how the slow decay in the Hankel singular values of a system
affects the quality of the reduced system.

SISO RLC Ladder Circuit

For the SISO RLC ladder circuit in Figure 3.2, the singular value decay can be seen
in Figure C.1(c). Using GSHSR, we construct five different reduced systems whose sizes
increase from 20 to 180 with an increment of 40. Figures C.1(a) and (b) show that as the
size of the reduced system increases, its responses in magnitude and phase get closer to those
of the original system. In addition, the size of the reduced system needs to be quite large
for its frequency responses to match those of the original system well. These observations
perfectly agree with what is observed in Figure C.1(c). The larger the size of the reduced
system, the more information from the original system it obtains, the better an approximation
to the original system it presents. In addition, due to the slow decay in the Hankel singular
values, the size of the reduced system (which is associated with the number of Hankel singular
values) has to be significantly large in order for it to be a good approximation to the original
system.

10
0

10
2

10
4

10
6

10
8

10
10

−120

−100

−80

−60

−40

−20

0

20

40

frequency (Hz)

m
ag

 (
dB

)
of

 H
(s

)

RLCladder100: GSHSR: Magnitude

original
20
60
100
140
180

10
0

10
2

10
4

10
6

10
8

10
10

−200

−150

−100

−50

0

50

100

150

200

frequency (Hz)

ph
as

e
(d

eg
re

e)
 o

f H
(s

)

RLCladder100: GSHSR: Phase

original
20
60
100
140
180

(a) (b)

0 50 100 150 200
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

m
ag

ni
tu

de

RLCladder100: Singular Value Decay

(c)

F. C.1. SISO RLC ladder circuit: The magnitudes and phases of the frequency responses of the original
system of size 302 and reduced systems using GSHSR are shown in (a) and (b) respectively. Since the decay in
the Hankel singular values are quite slow as can be seen in (c), reduced systems of small size are not quite good
approximations.

30 A Survey of Model Order Reduction Methods for LTI Systems in Descriptor Form

MIMO RLC Ladder Circuit
For the MIMO RLC ladder circuit, the singular value decay can be seen in Figure C.2(c).

Using GSHSR, we construct six different reduced systems whose sizes increase from 80 to
180 with an increment of 20. Figures C.2(a) and (b) show that as the size of the reduced
system increases, its responses in magnitude and phase get closer to those of the original
system. In addition, the size of the reduced system needs to be quite large for its frequency
responses to match those of the original system well. These observations perfectly agree
with what is observed in Figure C.2(c). The larger the size of the reduced system, the more
information from the original system it obtains, the better an approximation to the original
system it presents. In addition, due to the slow decay in the Hankel singular values, the size
of the reduced system (which is associated the number of Hankel singular values) has to be
significantly large in order for it to be a good approximation to the original system.

10
0

10
2

10
4

10
6

10
8

10
10

−180

−160

−140

−120

−100

−80

−60

−40

frequency (Hz)

m
ag

 (
dB

)
of

 H
(s

)

RLCladder100MIMO: MGSHSR: Magnitude21

original

80

100

120

140

160

180

10
0

10
2

10
4

10
6

10
8

10
10

−150

−100

−50

0

50

100

150

200

frequency (Hz)

ph
as

e
(d

eg
re

e)
 o

f H
(s

)

RLCladder100MIMO: MGSHSR: Phase21

original
80
100
120
140
160
180

(a) (b)

0 50 100 150 200
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

m
ag

ni
tu

de

RLCladder100MIMO: Singular Value Decay

(c)

F. C.2. MIMO RLC ladder circuit: The (2,1)-magnitudes and phases of the frequency responses of the
original system of size 303 and reduced systems using MGSHSR are shown in (a) and (b) respectively. Since the
decay in the Hankel singular values are quite slow as can be seen in (c), reduced systems of small size are not quite
good approximations.

MIMO RLC Ladder Mesh
For the MIMO RLC ladder mesh in Figure 3.3, the singular value decay can be seen in

Figure C.3(c). Using GSHSR, we construct four different reduced systems whose sizes are
60, 120, 300 and 460. Figures C.3(a) and (b) show that as the size of the reduced system
increases, its responses in magnitude and phase get closer to those of the original system. In

R. Nong and H. Thornquist 31

addition, the size of the reduced system needs to be quite large for its frequency responses
to match those of the original system well. These observations perfectly agree with what is
observed in Figure C.3(c). The larger the size of the reduced system, the more information
from the original system it obtains, the better an approximation to the original system it
presents. In addition, due to the slow decay in the Hankel singular values, the size of the
reduced system (which is associated with the number of Hankel singular values) has to be
significantly large in order for it to be a good approximation to the original system.

10
0

10
2

10
4

10
6

10
8

10
10

−120

−110

−100

−90

−80

−70

−60

−50

−40

frequency (Hz)

m
ag

 (
dB

)
of

 H
(s

)

RLCmeshline2: MGSHSR: Magnitude13

original
60
120
300
460

10
0

10
2

10
4

10
6

10
8

10
10

−200

−150

−100

−50

0

50

100

150

200

frequency (Hz)

ph
as

e
(d

eg
re

e)
 o

f H
(s

)

RLCmeshline2: MGSHSR: Phase13

original
60
120
300
460

(a) (b)

0 100 200 300 400 500 600 700 800
10

−30

10
−25

10
−20

10
−15

10
−10

10
−5

10
0

m
ag

ni
tu

de

RLCmeshline2: Singular Value Decay

(c)

F. C.3. MIMO RLC ladder mesh: The (1,3)-magnitudes and phases of the frequency responses of the original
system of size 1083 and reduced systems using MGSHSR are shown in (a) and (b) respectively. Since the decay in
the Hankel singular values are quite slow as can be seen in (c), reduced systems of small size are not quite good
approximations.

CSRI Summer Proceedings 2008 32

SPARSE–GRID INTEGRATION IN FINITE ELEMENT SPACES

MATTHEW KEEGAN∗, DENIS RIDZAL†, AND PAVEL BOCHEV‡

Abstract. We investigate the use of sparse grids, typically used in stochastic sampling, for the numerical inte-
gration in “physical” space, i.e. in two and three dimensions, with applications to the finite element solution of PDEs.
In addition to studying classical sparse–grid constructions, we introduce an adaptive algorithm for the construction
of numerical integration rules on hypercubes, with the particular focus on exact integration of complete polyno-
mial spaces of a given degree. In contrast to the classical sparse–grid rules, our algorithm outperforms the simple
tensor–product rule in this regard. We also study the application of the proposed adaptive sparse–grid construction
in computing high–order tensor–product finite element PDE approximations on hexahedral grids.

1. Introduction. Numerical computation of continuous multivariate integrals arises in
many areas of computational science, such as statistical mechanics, financial mathematics,
and the discretization of partial differential equations (PDEs). The most common technique
is to approximate such integrals by a numerical integration rule, also known as a quadrature
or cubature rule, of the type ∫

Ω

f (x)dx ≈
∑
i∈I

wi f (xi), (1.1)

where f : Rn → R is a given integrand,Ω ⊆ Rn is the domain of integration, I denotes a finite
set of indices i, xi ∈ R

n are integration points or abscissae, and wi ∈ R are the corresponding
integration weights.

An important property of a numerical integration rule is its degree of exactness, defined as
the number m such that the integration rule recovers exactly the analytical value of the integral
of all polynomials of total degree m or lower, but fails to integrate at least one polynomial of
total degree m + 1. If this is true for a given rule, then∣∣∣∣∣∣∣

∫
Ω

f (x)dx −
∑
i∈I

wi f (xi)

∣∣∣∣∣∣∣ ≤ C · em,

where em = inf{||p − f ||∞ : p ∈ Pd
m}, P

d
m denotes the space of all multivariate polynomials

of dimension d and total degree m, and C is a constant that depends on the type of the nu-
merical integration rule and the domain of integration. It follows from the Stone–Weierstrass
approximation theorem that if f is continuous and Ω is compact,

∑
i∈I wi f (xi) →

∫
Ω

f (x)dx
as m → ∞. At the same time, the higher the desired degree of exactness, the more points
are required to approximate the integral, and hence a tradeoff between cost and accuracy is
required.

As an example of this tradeoff, solution of PDEs by a finite element method requires
numerical integration over so–called reference elements, which can be rather costly. If a
high–order finite element approximation is desired, the selection of the integration rule that
achieves a sufficiently high degree of exactness using the fewest integration points is critical
in reducing computational complexity. In this paper, we examine the effectiveness of sparse–
grid integration rules, typically used in high–dimensional stochastic sampling and simulation,
as a means of numerical integration in finite element spaces. Since sparse–grid rules are
typically developed for integration over hypercubes, we limit our presentation to integration
domains given by the reference element [−1, 1]d.

∗University of California, Los Angeles, mkeegan@math.ucla.edu
†Sandia National Laboratories, dridzal@sandia.gov
‡Sandia National Laboratories, pbboche@sandia.gov

M. Keegan, D. Ridzal and P. Bochev 33

Furthermore, we propose a new set of numerical integration rules, based on sparse–grid
constructions, that exactly integrate polynomials of a given total degree, and, for such inte-
grands, are more efficient than the rules most commonly employed in finite element integra-
tion on the domain [−1, 1]d. Albeit suboptimal, these rules may be desirable because they
are easily extendable to arbitrary dimension and arbitrary degree of exactness, which is a sig-
nificant advantage over the close–to–optimal rules developed in, e.g., [3]. We demonstrate
the effectiveness of the proposed rules in three dimensions. Additionally, we present data for
four and five dimensions, where they might be used for stochastic sampling and simulation
or in constructing higher–dimensional finite element approximations. We also explore the
accuracy of finite element PDE solutions obtained using the proposed rules in conjunction
with high–order tensor–product finite element bases on hexahedral elements.

The multivariate integration rules studied in this paper are constructed from a variety of
one-dimensional integration rules discussed in Section 2. In Section 3 we review multivariate
integration formulae, including simple tensor–product and Smolyak’s sparse–grid construc-
tions. Section 4 explores the issue of the degree of exactness, which is critical for integration
in finite element spaces. In Section 5 we present a set of adaptive sparse–grid rules with the
focus on polynomial exactness. Section 6 summarizes numerical results.

2. Univariate Integration Rules. There are three sets of univariate integration rules
that we will use in the construction of multivariate rules.

The Gauss rules are the best–known numerical integration rules in the literature. These
rules are optimal in the sense that an n-point rule has degree of exactness 2n − 1, the theo-
retical maximum. The points of the nth Gauss rule are the zeros of the nth–degree Legendre
polynomial. These rules are never nested (other than the point 0 for odd–degree rules).

The second set of rules considered are those proposed by Clenshaw and Curtis [2]. In
theory they are suboptimal since an n–point rule has degree of exactness n. However numer-
ical studies show that the actual degree of exactness is close to optimal for most integrands
[10]. This is due to their construction, based on rapidly converging Chebyshev approxi-
mations. The integration points of these rules are the extrema of Chebyshev polynomials
combined with the endpoints of the integration domain, 1 and −1. Below we propose using
the Clenshaw–Curtis rules with n = 2`−1 + 1 points since the rules are then nested.

The third set of rules is that proposed by Kronrod and extended by Patterson [8]. Kronrod
suggested adding n+1 points to an already given n–point rule, which gives a rule with degree
of exactness 3n + 1 (if n is even) or 3n + 2 (if n is odd). This method is optimal in the sense
that this is the maximum degree of exactness obtainable by a rule constructed in this way.
Patterson, using the 3–point Gauss rule as the first rule of his sequence, systematically added
the required Kronrod points to obtain a rule of size n = 2`+1 − 1 with degree of exactness
3 · 2`+1 − 1. Clearly these rules will also constitute a nested set.

3. Multivariate Integration Rules. We consider a sequence of approximations to (1.1)
with an increasing number of nodes. Namely, for ` ∈ N, we consider the d–dimensional
integration formula

Q(`, d) f =
n(`,d)∑
i=1

w`i f (x`i),

where n(`, d), the number of integration points or abscissae, satisfies n(`, d) < n(` + 1, d).
Here the abscissae, X(l, d) = {x`i , 1 ≤ `i ≤ n(`, d)} are elements of the hypercube [−1, 1]d.
We will refer to the subscript ` as the level of the corresponding integration formula. When
we refer to one–dimensional rules we will use the simpler notation Q` instead of Q(`, 1), and
n` instead of n(`, 1). By X` we mean the abscissae of the level ` one–dimensional rule.

34 Sparse–Grid Integration

We construct d–dimensional integration rules from the tensor product of one–dimensional
formulae. Such a construction is useful since it is easily generalized to any dimension and
can use univariate rules of any size. We define the tensor–product of univariate integration
rules by

(Q`1 ⊗ · · · ⊗ Q`d) f :=
n`1∑

i1=1

· · ·

n`d∑
id=1

w`1i1 · ... · w`d id · f (x`1i1 , ..., x`d id),

and introduce two examples of such a construction.

3.1. Simple–Product Formula. The most common rule is the simple tensor product of
identical one–dimensional integration rules:

T (`, d) f := (Q` ⊗ ... ⊗ Q`) f (3.1)

The greatest disadvantage of using this rule is that the number of abscissae needed to keep
a given degree of exactness increases exponentially with the dimension of the integration do-
main. In particular, if the one–dimensional rule Q` contains n` points, the multi–dimensional
T (`, d) rule will require (n`)d points. This is often called the “curse of dimensionality” and
can greatly restrict the usefulness of the simple product rule when either d or n` are large.

3.2. Sparse–Grid Formula. The sparse–grid tensor–product rule was proposed as an
alternative rule to reduce the effects of the curse of dimensionality, and is widely attributed
to Smolyak [9]. The sparse–grid rule is constructed via a summation of tensor products of
lower–order univariate rules. In particular, each of these tensor products need not be isotropic
with respect to the individual dimensions. This has as an implication that we can create
individual rules that are very accurate in desired directions but not in others. Therefore, we
construct a “sparse” structure that can have high accuracy with a small set of abscissae. Here
we review Smolyak’s construction.

Given a sequence of univariate rules Q1,Q2, ..., we define the difference of such rules as

∆` f := (Q` − Q`−1) f .

Notice that these difference rules are univariate rules themselves on the set X` ∪ X`−1. The
sparse grid rule is then defined as

Q(`, d) f :=
∑

|i|≤`+d−1

(∆i1 ⊗ ... ⊗ ∆id) f (3.2)

where i is the multi-index i = (i1, ..., id) and |i| = i1 + ... + id. This can be expressed within a
combinatorial formula [11], in terms of the original univariate formulae:

Q(`, d) f :=
∑

`≤|i|≤`+d−1

(−1)`+d−1−|i|
(

d − 1
` − |i|

)
(Qi1 ⊗ ... ⊗ Qid) f . (3.3)

In the multivariate case, we will continue to refer to ` as the level of the given rule.

3.3. Number of Integration Points. From (3.3) it follows that the set of points for the
d–dimensional sparse grid rule will be

X(`, d) :=
⋃

`≤|i|≤`+d−1

Xi1 × ... × Xid .

M. Keegan, D. Ridzal and P. Bochev 35

We say that univariate rules are nested if X` ⊂ X`+1 for all `. Similarly, we say that multivari-
ate rules are nested if X(`, d) ⊂ X(` + 1, d) for all `. If the chosen one–dimensional rules are
nested, we get that

X(`, d) =
⋃

|i|=`+d−1

Xi1 × ... × Xid ,

i.e. the resulting multivariate sparse grid rules are nested as well.
In the nested case,

X(`, d + 1) :=
⋃̀
s=1

X(` + 1 − s, d) × (Xs\Xs−1),

from which we can deduce the recursive formula for n(`, d),

n(`, d + 1) =
∑̀
s=1

n(` + 1 − s, d) · (ns − ns−1). (3.4)

If a univariate integration rule is chosen so that it is entirely non–nested (i.e. Xi ∩ X j = ∅ for
i , j), then

ñ(`, d) =
∑

`≤|i|≤`+d−1

ni1 · ... · nid (3.5)

denotes, in general, an upper bound for the number of integration points. If a rule is neither
nested nor entirely non–nested, there is, in general, no explicit formula for the number of in-
tegration points. Nonetheless, this number can usually be computed without much difficulty.

4. Polynomial Exactness. Let Pk = P
1
k be the space of one–dimensional polynomials

of degree k or less. Define m` as the highest degree for which the univariate rule Q` is exact.
The simple–product rule T (`, d) is exact on the tensor–product space

Pm`
⊗ ... ⊗ Pm`

, (4.1)

which is a superset of the space Pd
m`

, however, the degree of exactness of T (`, d), as defined
in the introduction, is limited to m`.

For the sparse grid, we will assume that our choice of the sequence of univariate integra-
tion rules satisfies

m1 = 1, m2 ≥ 3, mi+1 − mi ≥ mi − mi−1. (4.2)

The integration rule Q(`, d) as defined by (3.2) is exact on the “non–classical” polynomial
space ∑

|i|=`+d−1

Pmi1
⊗ ... ⊗ Pmid

. (4.3)

Note the relation between this space and the rule defined by (3.3). Theorem 1, see [7], is
useful in helping us determine the largest complete multivariate polynomial space integrated
exactly by sparse–grid rules.

T 1. Assuming (4.2) with m0 = −1, define δ(`, d) by

δ(`, d) = (mσ−1 + 1)(d − (τ + 1)) + (mσ + 1)(τ + 1) − 1 (4.4)

where

` + d − 1 = σd + τ (4.5)

for some σ ∈ N and τ ∈ {0, ..., d − 1}. Then Q(`, d) has degree δ(`, d) of exactness.

36 Sparse–Grid Integration

4.1. Degree of Exactness for Common Sparse–Grid Constructions. A sparse–grid
rule often considered in the literature is that based on the univariate Clenshaw–Curtis rule
[6, 4]. We denote it by QCC(`, d) for the d–variate sparse grid. Since nested rules grow more
slowly than non–nested rules, we ensure that this rule is nested and still growing as slowly as
possible, by taking

n1 = 1 and n` = 2`−1 + 1

for the levels ` > 1, and since the number of one–dimensional points for any given level is
odd, we get

m` = n`.

From Theorem 1 we deduce that the degree of exactness of the QCC(`, d) rule is given by

δ(`, d) =
{

2(` − 1) + 1, for ` + d − 1 < 4d
2σ−2(d + τ + 1) + 2d − 1, otherwise.

When using one–dimensional Gauss rules to construct multivariate rules it is impossible
to exploit nestedness, since 0 ∈ Rd is the only nested abscissa, and only in the case of rules
of odd order. This implies that there could be comparatively large growth as both d and
` increase. The second rule considered here is constructed from entirely non–nested one–
dimensional Gauss rules, with

ni = 2i−1, and mi = 2i − 1.

We denote it by QGfast(`, d). Its degree of exactness satisfies

δ(`, d) =
{

2(` − 1) + 1, for ` + d − 1 < 3d
2σ−1(d + τ + 1) + d − 1, otherwise.

The third rule also uses one–dimensional Gauss points, but, instead of allowing expo-
nential growth in the size of the univariate rule, we limit it to constant growth. In this case we
fix

ni = 2i − 1, and mi = 4i − 3.

Although fast–growing rules have advantages with respect to the number of integration points
and accuracy for polynomials of very high degree and dimension, slow growth can be bene-
ficial for lower polynomial degrees and dimensions. Examples of this are given in Section 6.
We denote this rule by QGslow(`, d). Its degree of exactness is given by

δ(`, d) =
{

2(l − 1) + 1, for ` + d − 1 < 2d
4σd − 6d + 4τ + 3, otherwise.

The fourth rule studied in this paper uses the Patterson univariate rule. This sparse grid
construction is considered in [4]. We will use QGP(`, d) to denote the multivariate rule thus
constructed. Here we fix

n` = 2` − 1,

as described above, and arrive at another nested multivariate rule. As

ml = 3 · 2` − 2,

we obtain from Theorem 1 that the degree of exactness of the QGP(`, d) rule is

δ(`, d) =
{

2(` − 1) + 1, for ` + d − 1 < 2d
3 · 2σ−2(d + τ + 1) − d − 1, otherwise.

M. Keegan, D. Ridzal and P. Bochev 37

5. Adaptive Sparse Grid Rules. Many applications, such as the finite element solution
of PDEs, require accurate numerical integration of multivariate polynomials. Since integra-
tion rules often need to be applied repeatedly, decreasing the number of integration points
is an important goal. Sparse grid rules have good convergence properties with increasing
polynomial degree and dimension, but can be wasteful for the task of integrating a complete
polynomial space of lower degree in, e.g. three dimensions. In this section we relax the def-
inition of a sparse grid to include terms that contribute to the exact integration of a complete
polynomial space and exclude terms that do not, with the goal of decreasing the total number
of integration points.

5.1. Definition. The adaptive sparse grid [4] is defined as

QI f :=
∑
i∈I

(∆i1 ⊗ ... ⊗ ∆id) f , (5.1)

where I is an admissible index set in Nd. We say that I is admissible if

i − e j ∈ I, for all j ∈ {1, ..., d}, i j > 0,

whenever i ∈ I. Here e j is the jth unit vector. Notice that the usual sparse grid satisfies

I = {i ∈ Nd, |i| ≤ ` + d − 1}

for the appropriate level and dimension.
In [5] this idea is used to find the most appropriate rule to integrate a chosen integrand.

Our focus is on the integration of complete polynomial spaces.

5.2. A 2D Explanation. To illustrate how this adaption can be used in our case, we
choose dimension d = 2. The set of all monomials spanning P2

3 is shown in the diagram
below, where each row contains all monomials of total degree given in the left–hand column.

0 1
1 x y
2 x2 xy y2

3 x3 x2y xy2 y3

The simple–product rule and sparse–grid rules integrate out complete polynomials, here
viewed as linear combinations of monomials, in different manners. Examples are shown
in Table 5.1 for the T (`, d) rule and in Table 5.2 for the QGslow(`, d) rule. We showcase
the minimal T (`, d) and QGslow(`, d) rules that exactly integrate complete polynomial spaces
P2

3 and P2
5, respectively. The monomials marked below the horizontal lines are integrated

unnecessarily, and thus represent wasted effort. From that perspective, the QGslow(`, d) rule is
particularly “wasteful”, because it not only integrates the desired polynomial space P2

5 exactly,
but it unintentionally recovers 31 additional monomials, including the full spaces P2

6 and P2
7.

The increase in the level of a sparse–grid rule corresponds to the addition of new higher–
degree tensor–product terms, as shown by (3.3). For instance, the new monomials to the left
and to the right of the polynomial pyramid, shown in frame two of Table 5.2, are integrated
exactly by the terms Q3 ⊗ Q1 and Q1 ⊗ Q3, respectively, while the new terms in the middle
are integrated by Q2 ⊗ Q2. If we remove the terms Q3 ⊗ Q1 and Q1 ⊗ Q3 from the rule, then
we have a rule that is less expensive and still integrates the polynomial space P2

5 exactly, as
shown in Table 5.2. This corresponds to using the index set

I = {|i| ≤ 3} ∪ {(2, 2)}.

38 Sparse–Grid Integration

0 �
1 � �
2 � � �
3 � � � �
4 + � � � +
5 + + � � + +
6 + + + � + + +
7 + + + + + + + +

8 + + + + + + + + +

9 + + + + + + + + + +

10 + + + + + + + + + + +

0 �
1 � �
2 � � �
3 � � � �
4 • � � � •
5 • • � � • •
6 + • • � • • +
7 + + • • • • + +

8 + + + • • • + + +

9 + + + + • • + + + +

10 + + + + + • + + + + +

T 5.1
Exactly integrated monomials for the simple–product rule. Left: T (3, 2), the minimal rule that integrates P2

3
exactly. Right: T (5, 2), the minimal rule that integrates P2

5 exactly.

0 �
1 � �
2 � � �
3 � � � �
4 � � + � �
5 � � + + � �
6 + � + + + � +
7 + + + + + + + +

8 + + + + + + + + +

9 + + + + + + + + + +

10 + + + + + + + + + + +

0 �
1 � �
2 � � �
3 � � � �
4 � � • � �
5 � � • • � �
6 • � • • • � •
7 • • • • • • • •

8 • • + • • • + • •

9 • • + + • • + + • •

10 + • + + + • + + + • +

T 5.2
Exactly integrated monomials for the slow–Gauss rule. Left: QGS low(2, 2), the minimal rule that integrates P2

3
exactly. Right: QGS low(3, 2), the minimal rule that integrates P2

5 exactly.

Continuing this process, to integrate P2
7 exactly, we would use the rule QGS low(3, 2). To inte-

grate P2
9, we would use the index set

I = {|i| ≤ 4} ∪ {(3, 2), (2, 3)},

etc. We denote adaptive sparse–grid rules thus defined by QADPV .

0 �
1 � �
2 � � �
3 � � � �
4 � � • � �
5 � � • • � �
6 + � • • • �+
7 + + • • • •+ +

8 + + + • • •+ + +

9 + + + + • •+ + + +

10 + + + + + •+ + + + +

T 5.3
Exactly integrated monomials for the adaptive sparse–grid construction.

M. Keegan, D. Ridzal and P. Bochev 39

5.3. Adaptive Sparse–Grid Construction Formalized. Assume that a set of one–
dimensional rules Q` and the polynomial space Pd

m have been chosen. The goal is to find
the most efficient adaptive sparse–grid rule QADPV that integrates the polynomial space ex-
actly. The algorithm follows.

A 5.1 (Exact Adaptive Sparse–Grid Integration of Pd
m).

1. Loop over every d–dimensional monomial p(x) of total degree m or less. If (i1, ..., id)
is the vector of exponents of p(x), then for i j pick the smallest level l j such that Ql j

integrates xi j exactly.
2. Include (l1, ..., ls) in a pre–index set J . Once completed, the set J will contain the

largest indices required to construct the desired sparse grid.
3. Define index set

I = {i ∈ Nd, i ≤ j, j ∈ J}.

4. Construct sparse grid using either (5.1), or an analogous form of (3.3)

QI f :=
∑
i∈I

 1∑
z1=1

· · ·

1∑
zd=0

(−1)|z|χI(i + z)

 (Qi1 ⊗ ... ⊗ Qid) f ,

where χI is the characteristic function of I,

χI(x) =
{

1 if x ∈ I,
0 otherwise.

6. Numerical Results. There are two important aspects of the use of numerical inte-
gration in finite element simulation. The first is the integration of single integrands, such as
user–provided or right–hand side functionals, which are not always related to the choice of
the polynomial basis for the finite element space. The second, and likely more important
aspect is the computation of discrete differential operators, in which case the cost of numer-
ical integration is closely tied to the choice of the finite element basis (in particular, to its
degree or “order”). We investigate the performance of classical sparse–grid rules, described
in Section 4.1, as well as that of the proposed adaptive constructions in both scenarios.

6.1. Exact Integration in Pd
m Spaces. In Table 6.1 we compare the computational cost

of classical sparse grid rules, described in Section 4.1, to that of the simple–product rule,
described in Section 3.1, in the context of integration of complete polynomial spaces in three
dimensions. It is evident that the only rule that competes with the simple–product rule is the
slow–Gauss rule. In two dimensions the greater efficiency of the simple–product rule is even
clearer. We omit this comparison.

Table 6.2 compares the simple–product rule to the adaptive sparse–grid construction
based on the univariate slow–Gauss rule. For polynomials degree 17 or lower, the adap-
tive rule outperforms the simple–product rule. Its advantages are particularly pronounced for
polynomial degrees 5, 7, and 9. For completeness, we include the data for the symmetric
rules provided in [3], denoted by Dun, and the corresponding theoretical minimum (gener-
ally not achieved in practice), denoted by MinS , also see [3]. Although the Dun rules clearly
use fewer integration points than the adaptive sparse grid, they are difficult to construct for
arbitrarily high polynomial degrees and may be difficult to incorporate in finite element codes
since the points often lie outside of the reference domain [−1, 1]d.

Although general sparse grids already outperform the simple–product rule for dimen-
sions larger than 3, it should be noted that the adaptive construction can give even better
performance when integrating complete polynomial spaces. Furthermore, adaptive construc-
tions can be used for any of the sparse grids discussed in Section 4.1. Tables 6.3 and 6.4 show

40 Sparse–Grid Integration

Degree T (`, 3) QCC(`, 3) QGFast(`, 3) QGSlow(`, 3) QGP(`, 3)
m ` n` ` n` ` n` ` n` ` n`
3 2 8 2 7 2 7 2 7 2 7
5 3 27 3 25 3 31 3 31 3 31
7 4 64 4 69 4 110 4 105 4 111
9 5 125 4 69 5 344 4 105 4 111

11 6 216 6 441 6 992 5 297 5 351
13 7 343 7 441 7 2704 5 297 6 1023
15 8 512 8 2561 8 7072 6 735 7 2815
17 9 729 9 6017 8 7072 6 735 7 2815
19 10 1000 10 13953 8 7072 7 1631 7 2815

T 6.1
This table lists the minimum level, denoted by `, and the number of integration points, denoted by n`, required

by each rule of degree of exactness m, in three dimensions.

Degree T (`, 3) QADPV Dun MinS
3 8 7 6 6
5 27 19 14 14
7 64 39 27 27
9 125 87 53 52
11 216 153 89 77
13 343 273 151 127
15 512 465 235 175
17 729 705 307 253
19 1000 1183 435 333

T 6.2
Comparison of the number of integration points required by the simple–product, adaptive slow–Gauss, and

Dunavant rules, as well as the theoretical minimum (for a symmetric rule), to exactly integrate a complete polynomial
space of a given degree.

a performance comparison between the adaptive algorithm applied to the slow–Gauss rule,
the classical slow–Gauss rule, and the simple–product rule in four and five dimensions.

6.2. Finite Element Solution of a PDE. In this section we investigate the numerical
solution of a model PDE, obtained using a high–order finite element discretization combined
with the simple–product and adaptive slow–Gauss integration rules. We solve the Poisson
equation

−∆u(x) = f (x) x in Ω, (6.1)
u(x) = d(x) x on ∂Ω, (6.2)

where Ω = (0, 1)3, and the right–hand side f and Dirichlet boundary conditions d are manu-
factured so that the analytic solution u0 satisfies

u0(x) = sin(πx1) sin(πx2) sin(πx3)ex1+x2+x3 ,

for (x1, x2, x3) ∈ (Ω∪∂Ω). The Poisson equation is discretized using 3–rectangles of type (6),
where we refer to the notation of Ciarlet, [1, p.59ff], i.e. a 6th order Lagrange tensor–product
finite element basis with 343 degrees of freedom per reference element.

We study the accuracy of finite element approximations to u0 on a sequence of four
uniform partitions, 3×3×3 through 6×6×6, of the domain Ω. In addition, we check whether

M. Keegan, D. Ridzal and P. Bochev 41

Degree T (`, 4) QGS low QADPV

3 16 9 9
5 81 49 33
7 256 201 81
9 625 681 193

11 1296 681 409
13 2401 2001 777
15 4096 2001 1482
17 6561 5257 2537
19 10000 5257 4369

T 6.3
Comparison of the number of integration points required by the simple–product, classical slow–Gauss, and

adaptive slow–Gauss rules in four dimensions, to exactly integrate a complete polynomial space of a given degree.

Degree T (`, 5) QGS low QADPV

3 32 11 11
5 243 71 51
7 1024 341 151
9 3125 1341 391

11 7776 4543 933
13 16807 4543 1973
15 32768 13683 4013
17 59049 13683 7693
19 100000 37433 13983

T 6.4
Comparison of the number of integration points required by the simple–product, classical slow–Gauss, and

adaptive slow–Gauss rules in five dimensions, to exactly integrate a complete polynomial space of a given degree.

the chosen discretization combined with the simple–product and adaptive slow–Gauss rules
passes the so–called patch test, i.e. whether a PDE solution belonging to the space P3

6 can be
recovered to near machine precision. For the patch test we use the linear combination of all
multivariate monomials in P3

6 with unit weights as the reference solution.

T (`, 3) ‖uh − u0‖L2 ‖uh − u0‖H1 ‖uh − u0‖L2 patch test
Degree order order on 6×6×6 (L2 error)

6 — — 7.0e+10 Fail (> 1)
8 — — 4.5e+01 Fail (> 1)

10 6.9998 6.0098 9.3e−10 Pass (1.9e−13)
12 6.9998 6.0098 9.3e−10 Pass (2.6e−13)

T 6.5
L2 and H1 orders of convergence, L2 error on the finest grid, and patch test results for the simple–product rule.

The results are presented in Tables 6.5 and 6.6. We make several observations. First,
for a sufficiently high degree of exactness, theoretical orders of convergence, namely 7 in the
L2 norm and 6 in the H1 norm, are obtained for both the simple–product and the adaptive
slow–Gauss formula. Second, it is evident that the adaptive sparse–grid rule is inferior to the
simple–product rule. This can be explained by the fact that the adaptive sparse–grid rule is
designed for exact integration of complete polynomial spaces — in contrast, the differential

42 Sparse–Grid Integration

QADPV ‖uh − u0‖L2 ‖uh − u0‖H1 ‖uh − u0‖L2 patch test
Degree order order on 6×6×6 (L2 error)

16 — — 4.1e+00 Fail (> 1)
18 5.0298 3.9884 2.0e−06 Fail (1.0e−03)
20 7.6813 5.8886 1.5e−06 Fail (5.5e−04)
22 7.0091 6.0151 9.3e−10 Pass (5.7e−13)
24 7.0091 6.0151 9.3e−10 Pass (4.5e−13)

T 6.6
L2 and H1 orders of convergence, L2 error on the finest grid, and patch test results for the adaptive slow–Gauss

rule.

operators used herein for the solution of the PDE are computed using products of gradients
of tensor–product polynomials in P1

6 × P
1
6 × P

1
6. Such products belong to a polynomial space

much larger than P3
10, the space that contains products of gradients of polynomials in P3

6.
On the other hand, the simple–product rule is a full tensor–product rule, and thus a natural,
perhaps optimal choice for integration in a tensor–product finite element space. This and
other higher–order examples support the conjecture that an mth–order tensor–product finite
element discretization passes the patch test if combined with a simple–product rule of degree
of exactness 2m − 2, whereas an adaptive slow–Gauss rule of degree of exactness 4m − 2
is otherwise necessary. Finally, we note that in either case, success of the patch test always
indicates optimal order of convergence of the finite element approximation. At the same
time, for the simple–product rule, failure of the patch test always implies complete loss of
convergence of the finite element approximation. In contrast, failure of the patch test in the
case of the adaptive slow–Gauss rule is often related to merely partial loss of convergence.

7. Conclusion. We have investigated the use of sparse grids, typically used in stochastic
sampling, for the numerical integration in “physical” space, i.e. in two and three dimensions.
In addition to studying classical sparse–grid constructions, we have introduced an adaptive al-
gorithm for the construction of numerical integration rules on the domain [−1, 1]d of arbitrary
dimension d, with the particular focus on exact integration of complete polynomial spaces of
a given degree. In contrast to the classical sparse–grid rules, our algorithm outperforms the
simple tensor–product rule in this regard, for the spaces P3

3 through P3
17. Integration formu-

lae exist that perform even better than the proposed adaptive rule, see [3], however, they are
difficult to extend to arbitrary polynomial degree and dimension.

Additionally, we have studied the application of the proposed adaptive sparse–grid rules
in computing high–order tensor–product finite element PDE approximations using hexahedral
elements. Due to the tensor–product nature of finite element spaces used on such elements,
the adaptive rule cannot match the performance of the simple tensor–product rule. We offer a
conjecture on the degree of exactness necessary by either rule to pass the so–called patch test
and recover the optimal order of convergence of the finite element approximation. It remains
to be seen whether the simple tensor–product rule is in fact optimal in this regard.

REFERENCES

[1] P. G. C, The Finite Element Method for Elliptic Problems, SIAM, Philadelphia, 2002.
[2] C. W. C A. R. C, A method for numerical integration on an automatic computer, Numer.

Math., 2 (1960), pp. 197–205.
[3] D. D, Efficient symmetrical cubature rules for complete polynomials of high degree over the unit cube,

Int. J. Num. Meth. Engng., 23 (1986), pp. 397–407.

M. Keegan, D. Ridzal and P. Bochev 43

[4] T. G M. G, Numerical integration using sparse grids, Numer. Algorithms, 18 (1998),
pp. 209–232.

[5] , Dimension-adaptive tensor-product quadrature, Computing, 71 (2003), pp. 65–87.
[6] E. N K. R, High-dimensional integration of smooth functions over cubes, Numer. Math., 75

(1996), pp. 79–97.
[7] , Simple cubature formulas with high polynomial exactness, Constr. Approx., 15 (1999), pp. 499–522.
[8] T. N. L. P, Table errata: “The optimum addition of points to quadrature formulae” (Math. Comp. 22

(1968), 847–856; addendum, ibid. 22 (1968), no. 104, loose microfiche suppl. C1-C11), Math. Comp.,
23 (1969), p. 892.

[9] S. A. S, Quadrature and interpolation formulas for tensor products of certain classes of functions,
Dokl. Akad. Nauk SSSR, 148 (1963), pp. 1042–1043. Russian, Engl. Transl.: Soviet Math. Dokl. 4:240–
243, 1963.

[10] L. N. T, Is Gauss quadrature better than Clenshaw-Curtis?, SIAM Rev., 50 (2008), pp. 67–87.
[11] G. W. W H. Ẃ, Explicit cost bounds of algorithms for multivariate tensor product

problems, J. Complexity, 11 (1995), pp. 1–56.

CSRI Summer Proceedings 2008 44

OVERVIEW AND PERFORMANCE ANALYSIS OF THE EPETRA/OSKI MATRIX
CLASS INTERFACE IN TRILINOS

IAN KARLIN ∗ AND JONATHAN HU †

Abstract. In this paper, we describe a new matrix class in Epetra that gives a Trilinos application access to the
Optimized Sparse Kernel Interface (OSKI) package. Epetra is the core basic linear algebra package within Trilinos,
Sandia’s numerical algorithms framework. We give an overview of OSKI and the new Epetra class design. We also
present numerical results that compare performance of equivalent OSKI and Epetra kernels in serial and in parallel.
Finally, we discuss potential impact of OSKI on applications that currently use Trilinos.

1. Introduction. Many real world scientific problems, in fields such as atmospheric
science, quantum physics, and structural engineering, are simulated on computers. Due to
model complexity, fidelity, or time scales, such simulations often must be run on massively
parallel computers. The time and effort involved in designing these simulations is large.
Therefore, many simulations leverage existing optimized kernels and algorithms provided by
other software libraries. At Sandia, one such source of state-of-the-art numerical algorithms
is the Trilinos project [7].

Trilinos is a collection of scientific computing libraries called “packages”. Each package
in Trilinos has unique functionality, and is written by domain experts. Packages are typically
autonomous, but can leverage capabilities in other Trilinos packages. Functionality available
within Trilinos packages includes basic linear algebra operations, preconditioning, solvers,
data distribution and load balancing. The Trilinos project provides application developers a
suite of modern optimized numerical methods. In turn, Trilinos leverages basic libraries such
as the BLAS [4] and LAPACK [1].

Epetra, a foundational package within Trilinos, is frequently used by other packages
[9]. Epetra provides fundamental classes and methods for serial and parallel linear algebra.
Classes available include point and block matrices, multivectors, and graphs. These and other
classes support the usual linear algebra operations. All solver packages within Trilinos can
use Epetra kernels as building blocks for both serial and parallel algorithms. For this reason,
the performance of solvers depends upon Epetra’s performance. Therefore, making Epetra
as efficient as possible will improve the performance and efficiency of other packages that
depend on it.

Just as a program is only as efficient as its underlying components, a parallel program
can only be as efficient as the code run on each processor. Even if a program scales efficiently,
if its underlying serial code is inefficient, its parallel implementation will be inefficient. By
improving the performance of the single-processor portion of a parallel program, the potential
top speed of a parallel program is improved. For example, in many scientific programs an
important kernel operation is matrix-vector multiplication. By speeding up this kernel, overall
simulation speed can be improved.

The Optimized Sparse Kernel Interface (OSKI) provides many highly tuned matrix vec-
tor multiply kernels [13, 2, 14]. OSKI provides five optimized, serial, sparse matrix-vector
kernels: four routines that perform matrix-vector multiplication and one that performs a trian-
gular solve of a system of equations. At install time, OSKI’s kernels can be tuned according
to the underlying machines architecture. At runtime, OSKI’s kernels can be tuned according
to matrix/vector structure. The new Epetra/OSKI interface enables Trilinos and application
developers to leverage the highly tuned kernels provided by OSKI in a standardized manner.

∗University of Colorado, Boulder, Ian.Karlin@colorado.edu
†Sandia National Laboratories, jhu@sandia.gov

I. Karlin and J. Hu 45

In this paper, we discuss our implementation of an interface to OSKI within Epetra and
assess its performance. In Section 2, we give an overview of the design and features of the
OSKI package itself. In Section 3, we discuss the design of the Epetra interface to OSKI. In
Section 4, we discuss the results of performance tests run on the OSKI kernels within Epetra.
Tests were run on individual OSKI kernels, and include small scaling studies. In Section 5,
conclusions of the work and results described in this paper are presented. In Section 6, ways
to add more functionality to our implementation, and suggestions of things to test in new
OSKI releases are presented.

2. OSKI High Level Overview. OSKI is a package used to perform optimized sparse
matrix-vector operations. It provides both a statically tuned library created upon installation
and dynamically tuned routines created at runtime. OSKI provides support for single and
double precision values of both real and complex types, along with indexing using both in-
teger and long types. When possible it follows the sparse BLAS standard [5] as closely as
possible in defining operations and functions.

Before a matrix can use OSKI functionality, it first must be converted to the matrix type
oski matrix t. To store a matrix as an oski matrix t object, a create function must be
called on a CSR or CSC matrix. An oski matrix t object can either be created using a
deep or shallow copy of the matrix. When a shallow copy is created, the user must only make
changes to the matrix’s structure through the OSKI interface. When a deep copy is created,
the matrix that was passed in can be edited by the user as desired. OSKI automatically makes
a deep copy when any matrix is tuned in a manner that changes its structure.

Routine Calculation
Matrix-Vector Multiply y = αAx + βy or

y = αAT x + βy
Triangular Solve x = αA−1x or

x = αAT−1x
Matrix Transpose Matrix-Vector Multiply y = αAT Ax + βy or

y = αAAT x + βy
Matrix Power Vector Multiply y = αApx + βy or

y = αAT px + βy
Matrix-Vector Multiply and y = αAx + βy and
Matrix Transpose Vector Multiply z = ωAw + ζz or

z = ωAT w + ζz
T 2.1

Computational kernels from OSKI available in Epetra.

OSKI provides five matrix-vector operations to the user. The operations are shown in
Table 2.1. Hermitian operations are available in OSKI, but are not shown in the table since
Epetra does not include Hermitian functionality. The last three kernels are composed opera-
tions using loop fusion [6] to increase data reuse. To further improve performance, OSKI can
link to a highly tuned BLAS library.

OSKI creates optimized routines for the target machine’s hardware based on empirical
search, in the same manner as ATLAS [15] and PHiPAC [3]. The goal of the search is create
efficient static kernels to perform the operations listed in Table 2.1. The static kernels then
become the defaults that are called by OSKI when runtime tuning is not used. Static tuning
can create efficient kernels for a given data structure. To use the most efficient kernel, the
matrix data structure may need to be reorganized.

46 Overview and Performance Analysis of the Epetra/OSKI Matrix Class in Trilinos

When an operation is called enough times to amortize the cost of rearranging the data
structure, runtime tuning can be more profitable than using statically tuned functions. OSKI
provides multiple ways to invoke runtime tuning, along with multiple levels of tuning. A user
can explicitly ask for a matrix to always be tuned for a specific kernel by selecting either the
moderate or aggressive tuning option. If the user wishes for OSKI to decide whether enough
calls to a function occur to justify tuning, hints can be used. Possible hints include telling
OSKI the number of calls expected to the routine and information about the matrix, such as
block structure or symmetry. In either case, OSKI tunes the matrix either according to the
user’s requested tuning level, or whether it expects to be able to amortize the cost of tuning if
hints are provided. Instead of providing hints the user may, periodically call the tune function.
In this case, the tune function predicts the number of future kernel calls based on past history,
and tunes the routine only if it expects the tuning cost to be recovered via future routine calls.

OSKI can also save tuning transformations for later reuse. Thus, the cost of tuning
searches can be amortized over future runs. Specifically, a search for the best tuning options
does not need to be run again, and only the prescribed transformations need to be applied.

OSKI is under active development. As of this writing, the current version is 1.0.1h,
with a multi-core version under development [12]. While OSKI provides many optimized
sparse matrix kernels, some features have yet to be implemented, and certain optimizations
are missing. OSKI is lacking multi-vector kernels and stock versions of the composed kernels.
These would greatly add to both OSKI’s usability and performance. The Matrix Power Vector
Multiply is not functional. Finally, OSKI cannot transform (nearly) symmetric matrices to
reduce storage or convert from a CSR to a CSC matrix (or vice versa). Both could provide
significant memory savings. Thus, performance gains from runtime tuning should not be
expected for point matrices. An exception is pseudo-random matrices, which may benefit
from cache blocking.

3. Design and Implementation. In the design and implementation of the Epetra OSKI
interface the Epetra coding guidelines [8] were followed as closely as possible. In doing so,
we ensured the consistency of our code with the existing Epetra code base, as well as its
readability and maintainability. Finally, the Epetra interface to OSKI will likely be ported to
Kokkos [10], and the interface’s design will make this process easier.

In the design phase we focused on allowing the greatest amount of flexibility to the user,
and exposing as much of the functionality of OSKI as possible. In some places, however,
OSKI functionality is not exposed because there is not a corresponding Epetra function. For
example, OSKI has a function that allows changing a single value in a matrix, but Epetra
does not. When two copies of a matrix exist, as when the OSKI constructor makes a deep
copy of the underlying data, the corresponding Epetra copy is guaranteed to contain the same
data. Since Epetra can only change data values one row at a time, a point set function is not
included in the OSKI interface. Instead, we include a function to change a row of data within
OSKI by overloading the Epetra function to change row data. When a single copy of the data
exists, the Epetra function is called on the matrix. When both an OSKI and Epetra matrix
exist, both the matrix copies are modified to keep the data consistent. The Epetra function is
called once for the Epetra version of the matrix, and the OSKI matrix has its point function
called once for each entry in the row.

When there are clear equivalent functions in OSKI and Epetra, the OSKI function is de-
signed to overload the Epetra function. In the cases where OSKI provides more functionality
than Epetra, the interface is designed with two functions to perform the operation. The first
function mimics Epetra’s functionality and passes values that eliminate the extra functional-
ity from OSKI. The second function exposes the full functionality OSKI provides. Also, as
appropriate new functions are added that are specific to OSKI, such as the tuning functions.

I. Karlin and J. Hu 47

Conversely, Epetra functions without any analogue in the OSKI context are not overloaded in
the Epetra Oski namespace.

The interface promotes robustness and ease of use. All Epetra OskiMatrix func-
tions that take in vectors or multi-vectors allow for the input of both Epetra Vector or
Epetra MultiVector objects, and Epetra OskiVector or Epetra OskiMultiVector ob-
jects. The objects are converted to the proper types as necessary through the use of the lightest
weight wrapper or converter possible.

The implementation follows the idea of wrapping and converting data structures in as
lightweight a fashion as possible, to maximize speed and minimize space used. In addition,
the implementation provides the user with as much flexibility as possible. For example, the
user can specify as many tuning hints as they like. Alternatively, the user can ask Epetra to
figure out as much as it can about the matrix and pass along those hints to OSKI. Both options
can be combined, with user-specified hints taking precedence over automatically generated
hints. Options are passed by the user via Teuchos parameter lists [11].

Class Function
Epetra OskiMatrix Derived from Epetra CrsMatrix.

Provides all OSKI matrix operations.
Epetra OskiMultiVector Derived from Epetra MultiVector.

Provides all OSKI multi-vector operations.
Epetra OskiVector Derived from Epetra OskiMultiVector.

Provides all OSKI vector operations.
Epetra OskiPermutation Stores permutations and provides Permutation

functions not performed on a Epetra OskiMatrix.
Epetra OskiError Provides access to OSKI error handling functions

and the ability to change the default OSKI error
handler.

Epetra OskiUtils Provides the initialize and finalize routines for
OSKI.

T 3.1
OSKI classes within Epetra.

Finally, the design is broken into six separate classes. Table 3.1 shows the classes and
provides information about which classes each derives from, and what functions each con-
tains. The design is as modular as possible to allow for the easy addition of new functions,
and to logically group related functions together.

4. Results. To assess the potential benefit of using OSKI in Sandia applications, we ran
tests on representative data and a variety of advanced architectures. For these tests OSKI
version 1.0.1h was used. OSKI runtimes were compared to the runtimes of the currently used
Epetra algorithms, in both serial and parallel. In this section, we first present our test envi-
ronment and methodology, and then present the results of performance tests run comparing
Epetra to OSKI.

4.1. Test Environment and Methodology. Performance tests were run on two different
machine architectures in serial and parallel. The first test machine has two Intel Clovertown
processors. The second test machine has one Sun Niagara-2 processor. Machine specifica-
tions and compilers are shown in Table 4.1. On each machine, Trilinos was compiled with
widely used optimizations levels, and OSKI was allowed to pick the best optimization flags
itself.

48 Overview and Performance Analysis of the Epetra/OSKI Matrix Class in Trilinos

processor #chips cores threads frequency L2 cache compiler
Clovertown 2 8 8 1.87 Ghz 4 M per 2 cores Intel
Niagara-2 1 8 64 1.4 Ghz 4 M per core Sun

T 4.1
Test machines used for performance testing.

These machines were chosen for their diversity and potential for use at Sandia. The
Clovertown is one of Intel’s latest processors, and the Niagara is an example of an extremely
parallel chip.

On each machine, tests were run on three matrices arising from Sandia applications.
The first matrix is from a finite element discretization within a magnetics simulation. The
second is a block-structured Poisson matrix. The third matrix is unstructured and represents
term-document connectivity. The data is from the Citeseer application. Table 4.2 gives some
matrix properties. Each matrix was able to fit within the main memory of each test machine.
These matrices were also used in a scaling study. Tests were run up to the total number of

matrix rows columns nnz structure
point 556356 556356 17185984 nearly symmetric point
block 174246 174246 13300445 symmetric 3 by 3 blocks
Citeseer 607159 716770 57260599 unstructured point

T 4.2
Test machines for Epetra OSKI performance testing.

available threads that can be executed simultaneously, on each machine.

4.2. Performance Test Results. The serial results for each machine are shown in Fig-
ures 4.1 and 4.2 for four OSKI kernels: Ax, AT x, AT Ax, and the two-vector multiplication
y = Ax; z = Aw. The last operation is henceforth referred to as “2Mult”. In addition, Table
4.3 shows the speeds of Epetra calculations as a baseline. Since OSKI has no atomic versions
of the composed kernels, the OSKI stock numbers represent two separate matrix-vector mul-
tiply calls to OSKI. There is potential that the tuned composed kernels are not performing
optimally due to tuning to a non-ideal data structure, as is seen in the tuning cost data later.
Results for the matrix power kernel are unavailable due to a bug in the kernel. Also results
for the AAT kernel were excluded because Epetra only stores matrices in CSR. OSKI cannot
convert CSR to CSC, which is needed to take advantage of these kernels in serial. Finally, the
direct solve kernel was not profiled, as it is not critical to many Sandia applications.

F. 4.1. Relative performance of Epetra and OSKI in serial on Clovertown.

I. Karlin and J. Hu 49

Machine Ax AT x AT A 2Mult
Clovertown 220/227/55 150/154/43 178/183/48 178/184/48
Niagara 58.3/69.9/20.7 56/66.4/20.3 57.1/68.1/20.5 57.1/68.1/20.5

T 4.3
Epetra serial routine speeds in Mflops. Results are in the form point/block/Citeseer.

On the Clovertown, OSKI produced large speedups over Epetra for all matrices in se-
rial, as shown in Figure 4.1. The stock kernels demonstrated speedups of 1.8 to 2.8. Tuning
improved the block matrices by about one third when compared to the stock kernels. The
composed algorithms demonstrated even more significant speedups of up to 5.5, when com-
posing and blocking were combined. Tuning did not improve the runtime of point matrices,
except when a composed kernel was used. In the case of the Citeseer matrix, a composed
kernel resulted in either no performance gain or performance degradation.

F. 4.2. Relative performance of Epetra and OSKI in serial on Niagara.

Figure 4.2 shows that on the Niagara, the stock OSKI and Epetra kernels had roughly the
same performance Tuning for point matrices once again resulted in either no gains or slight
losses. Tuning for block matrices resulted in a one third to one half gain in speed. Again,
composing increased the speed of all kernels significantly, except for the Citeseer matrix, for
which the OSKI kernels where actually slower.

As expected, the serial tests show that the tuning of point matrices is counterproductive,
except when needed to use composed kernels. However, tuning of block matrices results in
significant speedups through the reduction of indirect addressing. For the pseudo random
Citeseer matrix, tuning is never beneficial. This is probably due to either lack of cache-
blocking in the composed kernels and/or more random access, which create a greater number
of cache misses. For structured matrices, composing results in a 25% to 60% gain over the
faster of the stock and tuned kernels.

Even if the tuning gains shown above are large, the amount of time it takes to tune
a matrix at runtime is important in determining whether tuning will result in performance
gains. Tables 4.4, 4.5 and 4.6 show the cost of tuning and the number of matrix-vector calls
needed to amortize that cost for the point, block, and Citeseer matrices, respectively. The
tuning and retuning costs are expressed in terms of the number of matrix-vector multiplies
that could be performed in the time it takes to tune. Tuning cost is the amount of time it takes
to tune a matrix the first time, and includes time to analyze the matrix to determine what
optimizations are beneficial. Retuning cost is the amount of time it takes to tune the matrix if
the optimizations to be performed are already known. All comparisons are to the faster of the
Epetra and OSKI matrix-vector multiplies. The amortize columns show the number of calls
to the tuned kernel needed to realize tuning gains. When N/A is listed in an amortize column,

50 Overview and Performance Analysis of the Epetra/OSKI Matrix Class in Trilinos

it is never better to tune because the tuned kernels are no faster than the untuned kernels. We
note that the tuning cost depends only on the matrix structure, not on the matrix kernel to be
performed.

Machine Tune/Retune Amortize Amortize Amortize
Ax/Retune AT A/Retune 2Mult/Retune

Clovertown 37.6 / 20.1 N/A 48 / 26 45 / 24
Niagara 22.1 / 12.7 N/A 56 / 33 40 / 24

T 4.4
OSKI tuning costs for point matrix. Cost is equivalent number of matrix-vector multiplications.

Machine Tune/Retune Amortize Amortize Amortize
Ax/Retune AT A/Retune 2Mult/Retune

Clovertown 31.1 / 17.7 131 / 75 27 / 16 28 / 16
Niagara 22.5 / 14.1 86 / 54 22 / 14 21 / 13

T 4.5
OSKI tuning costs for block matrix. Cost is equivalent number of matrix-vector multiplications.

Machine Tune/Retune Amortize Amortize Amortize
Ax/Retune AT A/Retune 2Mult/Retune

Clovertown 14.5 / 6.7 N/A N/A N/A
Niagara 11.5 / 5.2 N/A N/A N/A

T 4.6
OSKI tuning costs for Citeseer matrix. Cost is equivalent number of matrix-vector multiplications.

In many cases, the tuned OSKI kernels are much more efficient than the Epetra and
OSKI stock kernels. However, the data structure rearrangement required to create an OSKI
kernel is non-trivial. The cost of tunings ranges from 11.5 to 37.6 equivalent matrix-vector
multiplies. It can require as many as 131 subsequent kernel applications to recoup the cost
of initial tuning. However, re-tuning costs are usually slightly over half the cost of the initial
tuning, so saving transformations for later use could be profitable. Block matrices require the
smallest number of calls to recover tuning costs, and when combined with composed kernels,
this number drops even more. For point matrices tuning the matrix-vector multiply is never
profitable, but the tuning of composed kernels can be profitable for structured matrices.

While serial performance is important to application performance, most scientific sim-
ulations are run on parallel machines. The first level of parallelism is within a single node,
which typically contains one or two multicore processors. To test the scalability of our im-
plementation of OSKI, within Epetra, we ran tests on each matrix on 1 to 8 cores of each
machine and also on 1 to 8 threads per core on the Niagara.

Figures 4.3(a)-4.3(c) show the strong scaling of the matrix-vector kernel for each matrix.
Figure 4.3(a) shows that on the Clovertown that Epetra has better scaling than OSKI. Table
4.7 shows, however, that the overall performance of OSKI is either comparable or better to
that of Epetra. The better scaling for Epetra comes from its slower performance in the single
processor case, which allows for more improvement within a limited memory bandwidth
situation. For the point matrix, both Epetra and OSKI improve significantly until each is
running at about 735 Mflops on 4 cores. At this point, the calculations likely become memory
bandwidth limited. With added processing power, the speeds then improve to slightly under

I. Karlin and J. Hu 51

1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Processors

Sp
ee

du
p

Epetra point
OSKI point
Epetra block
OSKI block
Epetra citeseer
OSKI citeseer

(a) Clovertown

1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

9

Processors

Sp
ee

du
p

Epetra point
OSKI point
Epetra block
OSKI block
Epetra citeseer
OSKI citeseer

(b) Niagara

1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

9

10

Processors

Sp
ee

du
p

Epetra point
OSKI point
Epetra block
OSKI block
Epetra citeseer
OSKI citeseer

(c) Niagara multi-threaded

F. 4.3. OSKI matrix-vector multiply strong scaling results.

800 Mflops. The block matrix results show a similar pattern, with the OSKI block matrix
remaining more efficient throughout. The Citeseer matrix does not scale most likely due to
the large amounts of data it needs to exchange, because its unstructured. Also it could not be
run on 8 processors due to an increasing memory footprint, perhaps due to exchanged data.

machine point block Citeseer
Epetra/OSKI Epetra/OSKI Epetra/OSKI

Clovertown 798/782 810/1099 59.6/122
Niagara 1 thread/core 508/507 578/778 22.3/22.0
Niagara multiple threads/core 4767/4321 3447/4847 23.2/23.2

T 4.7
Epetra and OSKI maximum parallel matrix vector multiply speeds in Mflops.

Figure 4.3(b) shows that on the Niagara both the point and block matrix algorithms scale
linearly with the number of cores. Essentially, there is enough memory bandwidth to feed
each core. As seen in Figure 4.3(c), adding more threads per core to the calculating power
leads to approximately linear speedup for all matrices. This begins to tail off at 5 threads for
block matrices, and 7 threads for point matrices. The Citeseer matrix once again does not
scale and becomes too large to run above 32 threads.

Scalability also matters when a matrix is being tuned. Figures 4.4(a)-4.4(c) show how
well each matrix scales on each machine in terms of tuning cost. Scaling is usually linear

52 Overview and Performance Analysis of the Epetra/OSKI Matrix Class in Trilinos

or slightly better with the number of processors. This result is expected as tuning is a local
computation with no communication between processors. As seen in Figure 4.4(c), increasing
the number of threads per Niagara processor initially leads to improved performance, before
dropping off at 6 or more threads per processor. The dropoff is most likely due to threads
competing for processor resources. Results for the Citeseer matrix were not shown, as OSKI
does not tune its matrix-vector multiply kernel for the Citeseer matrix. Finally, note that the
retune function demonstrates better scaling than the same tune function in all cases.

1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

8

9

Processors

Sp
ee

du
p

Point tune
Point retune
Block tune
Block retune

(a) Clovertown

1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

9

Processors

Sp
ee

du
p

Point tune
Point retune
Block tune
Block retune

(b) Niagara single-threaded

1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

Processors

Sp
ee

du
p

Point tune
Point retune
Block tune
Block retune

(c) Niagara multi-threaded

F. 4.4. Scalability of OSKI tuning.

In addition to strong scaling tests, we also ran a weak scaling test on the Niagara. We
used the block matrix from the 8 thread test case in Table 4.2. Tests were run on 1, 8, 27
and 64 threads. Results are shown in Figures 4.5(a)-4.5(c). As seen in Figure 4.5(a), the
OSKI tuned and untuned matrix-vector multiplies both scale similarly to Epetra’s matrix-
vector multiply. Figure 4.5(b), shows that the tuned composed kernels do not scale well. The
same result was seen for the untuned composed kernels. For these operations to be possible
there is extra data copying in the wrapping of the serial kernels, which could be the problem.
There could also be inefficiencies in the code in other places or resource contention on the
processor. Figure 4.5(c) shows that re-tuning scales better than tuning as the problem size
grows.

5. Conclusions. Overall, OSKI can produce large speedups in sparse matrix computa-
tional kernels. This is especially true when the matrix is block structured or multiple multi-
plications are performed using the same matrix. In some cases it can also produce large gains

I. Karlin and J. Hu 53

0 10 20 30 40 50 60 70
0

0.02

0.04

0.06

0.08

0.1

0.12

Threads

Ti
m

e
(s

ec
on

ds
)

Epetra
OSKI stock
OSKI tuned

(a) MatVec

0 10 20 30 40 50 60 70
0

0.5

1

1.5

2

2.5

3

Threads

Ti
m

e
(s

ec
on

ds
)

Epetra ATA
OSKI ATA
Epetra TwoMult
OSKI TwoMult

(b) Composed

0 10 20 30 40 50 60 70
0

0.5

1

1.5

2

2.5

3

3.5

4

Threads

Ti
m

e
(s

ec
on

ds
)

Tune
Retune

(c) Tuning

F. 4.5. Weak scalability of OSKI on Niagara

for matrix-vector multiplies involving only a single matrix. However, OSKI is still missing
some features, such as a multi-vector kernel and the ability to tune matrices to make them
symmetric. Both could produce large runtime gains. Our Epetra/OSKI interface has stubs
to allow the use of these missing features as soon as they become available in OSKI. Our
experiments show that Sandia applications that make heavy use certain sparse matrix kernels
can benefit from the current version of OSKI. As new OSKI features become available, its
potential impact on other Sandia applications should increase.

6. Future Work. For the current (1.0.1h) version of OSKI, a developer may want to
implement the solve function and run more weak scalability or other parallel tests to deter-
mine why the composed kernels do not scale well. For a newer version of OSKI, a developer
may want to test any new tuning features, the matrix power kernel, as well as any other new
functions. Finally, we recommend any new version of OSKI be tested on the Barcelona and
Xeon chips, as we were never able to successfully install OSKI on these architectures. The
Barcelona is of particular interest, as it is the processor found in the center section of Red
Storm.

7. Acknowledgments. We would like to thank Brian Barrett and Doug Doerfler for
access to the Niagara and Clovertown architectures, respectively. We also would like to
thank Danny Dunlavy and Chris Siefert for providing us with the test matrices. In addition,
we would like to thank Mike Heroux, Chris Siefert and Jim Willenbring for reviewing the
interface design and answering questions along the way. Jim’s partial OSKI implementation

54 Overview and Performance Analysis of the Epetra/OSKI Matrix Class in Trilinos

of an interface within Kokkos helped serve as a model for our development. Finally, we
would also like to thank Rich Vuduc for his help with Oski-related questions.

REFERENCES

[1] E. A, Z. B, J. D, A. G, A. MK, J. D C, S. H, J. D,
C. B, D. S, Lapack: A portable linear algebra library for high-performance computers,
Nov 1990, pp. 2–11.

[2] B B OP G, OSKI: Optimized Sparse Kernel Interface.
http://bebop.cs.berkeley.edu/oski/about.html, May 2008.

[3] J. B, K. A, C.-W. C, J. D, Optimizing matrix multiply using phipac: a portable,
high-performance, ansi c coding methodology, in ICS ’97: Proceedings of the 11th international confer-
ence on Supercomputing, New York, NY, USA, 1997, ACM, pp. 340–347.

[4] L. S. B, J. D, J. D, I. D, S. H, G. H, M. H, L. K,
A. L, A. P, R. P, K. R, R. C. W, An updated set of Basic Linear
Algebra Subprograms (BLAS), ACM Transactions on Mathematical Software, 28 (2002), pp. 135–151.

[5] I. S. D, M. A. H, R. P, An overview of the sparse basic linear algebra subprograms: The
new standard from the BLAS technical forum, ACM Transactions on Mathematical Software (TOMS),
28 (2002).

[6] G. R. G, R. O, V. S, R. T, Collective loop fusion for array contraction, in 1992
Workshop on Languages and Compilers for Parallel Computing, no. 757, New Haven, Conn., 1992,
Berlin: Springer Verlag, pp. 281–295.

[7] M. A. H, R. A. B, V. E. H, R. J. H, J. J. H, T. G. K, R. B. L, K. R. L,
R. P. P, E. T. P, A. G. S, H. K. T, R. S. T, J. M. W,
A. W, K. S. S, An overview of the Trilinos project, ACM Trans. Math. Softw., 31
(2005), pp. 397–423.

[8] M. A. H P. M. S, Epetra developers coding guidelines, Tech. Rep. SAND2003-4169, Sandia
National Laboratories, Albuquerque, NM, December 2003.

[9] S N L, Epetra - Home.
http://trilinos.sandia.gov/packages/epetra/index.html, May 2008.

[10] , Kokkos - Home. http://trilinos.sandia.gov/packages/kokkos/index.html, May 2008.
[11] , Teuchos - Home. http://trilinos.sandia.gov/packages/teuchos, May 2008.
[12] R. V, Personal Communication, July 2008.
[13] R. V, J. W. D, K. A. Y, Oski: A library of automatically tuned sparse matrix kernels,

Journal of Physics Conference Series, 16 (2005), pp. 521–530.
[14] , The Optimized Sparse Kernel Interface (OSKI) library user’s guide for version 1.0.1h, tech. rep.,

University of California at Berkeley, Berkeley, CA, June 2007.
[15] R. C. W J. J. D, Automatically tuned linear algebra software, Procceding of the 1998

ACM/IEEE conference on Supercomputing (CDROM), (1998), pp. 1–27.

CSRI Summer Proceedings 2008 55

ALGEBRAIC MULTIGRID FOR POWER GRID NETWORKS

YAO CHEN ∗ AND RAY TUMINARO †

Abstract. We propose a multigrid algorithm for solving linear systems associated with saddle point systems
where the constraint equations correspond to either Dirichlet or Neumann type. Such systems arise in power grid
networks. A key aspect of this multigrid algorithm is a special prolongator. We show that if the prolongator satisfies
conditions with respect to the constraints, one is able to project the original saddle point system to a coarse level that
is symmetric positive definite without constraint equations. This implies that a more standard multigrid algorithm
can be applied to the coarse level matrix. Numerical results are given to demonstrate the multigrid convergence rate.

1. Problem description and notation. We are interested in solving linear systems of
the form (

A B
BT 0

) (
x
y

)
=

(
g
h

)
where the coefficient matrix will be denoted by K. These type of matrices arise in many
applications including power grid networks. For power grid networks, the matrix A describes
the interconnection of resistors, capacitors, and inductors, while B is used to describe voltage
sources and short circuits. Figure 1 gives an example of a power grid circuit (with resistors
of 1Ω) and the corresponding matrix representation of Kirchhoff’s law.

Figure 1

A =

2 −1 −1 0 0 0 0
−1 2 0 −1 0 0 0
−1 0 2 −1 0 0 0

0 −1 −1 2 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 1 −1
0 0 0 0 0 −1 1

, B =

1 0 0 0
0 0 1 0
0 0 0 0
0 0 0 1
0 0 −1 0
0 0 0 −1
0 1 0 0

g =

(
0 0 0 0 0 0.1 0

)T
, h =

(
3 0 0 0

)T

We assume the following properties:
1. A is symmetric positive semidefinite.

In the case of circuits this is typically a weighted graph Laplacian. That is, the
negative sum of the off-diagonal elements within a row gives the diagonal element.

2. B is a m × n matrix, m ≥ n. B is of full rank. The j-th column of B is either
(a) Dirichlet type: Bi j = 1, Bk j = 0,∀k , i.
There is a one in one location and zeros elsewhere,
e.g. (0, 0, . . . , 1, 0, . . . , 0)T .

∗The Pennsylvania State University, chen y@math.psu.edu
†Sandia National Laboratories, rstumin@sandia.gov

56 Algebraic Multigrid For Power Grid Networks

(b) Neumann type: Bi1 j = 1, Bi2 j = −1, Bk j = 0,∀k , i1, k , i2.
There is a (1,−1) pair and zeros elsewhere,
e.g. (0, 0, . . . , 1, 0, . . . ,−1, 0, . . . , 0)T .
In the above example, the first two columns of B are Dirichlet type and the last two
are Neumann type.

3. K is nonsingular.
Clearly, the circuit in Figure 1 satisfies these assumptions as do most power grid networks.

The above properties are the only assumptions that we make in the algorithms and anal-
ysis that follows. It should be noted, however, that often matrices arising from power grids
also satisfy these additional assumptions:

1. A is weakly diagonal dominant.
2. the eigenvector of A corresponding to the eigenvalue zero can only be the constant

vector ~1 or a canonical unit vector, ei.
3. When the i-th column of B is of “Neumann type”, the i-th component of h is zero.

However, our algorithm is more general than this as it does not require these additional
assumptions.

2. Basic idea. It is well known that K is indefinite with n negative eigenvalues. This
complicates the application of iterative methods such as multigrid. Our aim is to “reduce”
(or simplify) K to a symmetric positive definite matrix so that we could apply standard it-
erative methods such as conjugate gradient or some standard multigrid methods to solve it.
This is done by essentially projecting the equations into a subspace where the constraints are
satisfied. To do this, we first determine an initial guess x0, which satisfies

BT x0 = h.

It is not difficult to find such an x0 due to the simple structure of B (see appendix for details).
Assign y0 = 0, and let ĝ = Ax0 so that

K
(
x0
y0

)
=

(
ĝ
h

)
.

Then solve the residual equations

K
(
δx
δy

)
=

(
g − ĝ

0

)
. (2.1)

Define Q to be

Q = I − B(BT B)−1BT .

Notice that Q is a projection so QB = 0, BT Q = 0, and Ker Q = Range B. We then use Q to
rewrite (2.1).

T 2.1. the following three steps generate the solution of the above residual equa-
tion.
1) Solve for z in

QAQz = Q(g − ĝ).

2) Compute δx via

δx = Qz.

Yao Chen and Ray Tuminaro 57

3) Solve

BT Bδy = BT (g − ĝ − Aδx).

for δy.
Proof. Suppose that δx and δy are obtained by this three-step method. Then it follows

that

BTδx = BT Qz = 0 as BT Q = 0.

Thus, δx satisfies the constraint relation in (2.1). Step 1 and Step 2 indicate that

QAδx = Q(g − ĝ).

Therefore,

Aδx = g − ĝ + c

where c ∈ ker Q. Since ker Q = Range B, there exists a δy such that Bδy = −c. This δy can
be obtained by the normal equations system given in Step 3 as B is of full column rank.

Since A is positive semidefinite, QAQ is positive semidefinite. We can now apply a
general iterative method to solve z in Step 1, e.g. preconditioned conjugate gradient. We must
determine a suitable multi-level method for QAQ without requiring the explicit formation of
QAQ.

3. Two-level method, designing the prolongation operator. We now focus on defining
a multigrid method for Step 1 of the above method. A two-level multigrid method is given
below.

Set up initial guess x = x0.
Do the following until some error tolerance is satisfied.
(1) Do v1 times relaxation (smoothing):

z← 0, z← Rv1 (QAQ, z,Q(g − Ax)), x← x + Qz.

(2) Solve zc on coarse grid,

PT QAQPzc = PT Q(g − Ax).

(3) Project correction back to fine grid, or

x← x + QPzc.

Relaxation refers to a simple iterative procedure such as the Jacobi method. Since this is a
two-level method, it is not necessary to do post-smoothing, though this can easily be added.
The problem is that in order to calculate PT QAQP, the coefficient matrix on the coarse grid, it
appears necessary to form QAQ. However, Q contains (BT B)−1, which is hard to evaluate and
sometimes not sparse. Our idea is to instead construct a prolongation P, such that QP = P.
Therefore we can avoid matrix-matrix multiplication with Q as the coefficient matrix on the
coarse level is

A2 = PT QAQP = PT AP.

58 Algebraic Multigrid For Power Grid Networks

Thus the coarse grid correction (Step 2 and Step 3 above) is

x← x + PA−1
2 PT (g − ĝ).

P is typically defined using some structure of an underlying mesh within geometric multi-
grid. While this may be natural for partial differential equations, it is not very practical for
circuits as there is no notion of an underlying mesh. Instead, algebraic multigrid methods
seem more appropriate. With algebraic methods, P is chosen based on the fine grid matrix.
In our case this corresponds to the matrix QAQ. However, we wish to avoid the need to
explicitly calculate QAQ as Q contains (BT B)−1, and it may give rise to a matrix QAQ with
many more non-zeros than A. Instead, we seek a matrix P which can be constructed without
forming QAQ and which satisfies the following properties:

1. P is of full rank.
2. QP = P.
3. PT QAQP is sparse.
4. each row of P has at most one non-zero entry.

One important property of such a prolongator is that it guarantees that PT QAQP is non-
singular though the matrix QAQ can be singular.

T 3.1. Assume P is of full rank and that QP = P. Then, A2 = PT QAQP is positive
definite.

Proof. As A is positive semidefinite, we have

∀x, xT Ax ≥ 0.

When x = Pv, it follows immediately that

∀v, vT PT APv ≥ 0.

Suppose that there exists a v , 0, such that

vT PT APv = 0.

The assumption that P is of full rank implies that

x = Pv , 0

and so x must be a linear combination of eigenvectors of A corresponding to the zero eigen-
values. Therefore Ax = 0. We also have that BT x = 0 as BT x = BT Pv = BT QPv = 0. This,
however, implies that (

A B
BT 0

) (
x
0

)
= K

(
x
0

)
= 0

which contradicts the assumption that K is non-singular.
The algorithm to construct the prolongator is given in the appendix. The basic idea

somewhat mirrors the tentative prolongator that is used in smoothed aggregation [3, 2] which
is based on piecewise-constants. However, special care is needed to satisfy QP = P.

4. Numerical results. To test this method, we use a realistic benchmark provided by
IBM. 1 The sizes of the matrices from the first benchmark are

• A : 30635 × 30635;

1IBM powergrid benchmark, http://dropzone.tamu.edu/˜pli/PGBench/.

Yao Chen and Ray Tuminaro 59

• B : 30635 × 14308;
In this particular case BT B is a diagonal matrix. This is due to the simple structure of the

Neumann type constraints which represent these trivial short circuits and makes evaluations
with Q straight-forward.

We consider the following algorithms in our experiments:
1. (GMRES[10]) GMRES method restarting for every 10 steps.
2. (MG-CG)

(a) 8 conjugate gradient iterations with preconditioner diag(QAQ) as a multigrid
pre-smoother.

(b) Exact solver on the second level (exact A−1
2).

(c) No post-smoother.
3. (MG-JAC)

(a) 2 Jacobi iterations as a multigrid pre-smoother.
(b) Exact solver on the second level.
(c) No post-smoother.

4. (CG-MG-JAC) We use one MG-JAC V-cycle as a preconditioner of an outer CG
method. Here, we use one Jacobi iteration as pre-smoother and another one as the
post-smoother.

The following graph shows the convergence history. We tested the relative 2-norm of the
residual. The x axis indicates the number of relaxations.

Figure 2
We can see that the best method is clearly CG-MG-JAC as it has a better asymptotic conver-
gence rate than the other methods.

In order to show the scalability of this method, we applied it to a larger problem. Consider
a piece of a square semiconductor sheet with impurities inside. The square is discretized on a
29 × 29 uniform grid and can be modeled as a resistor network on that grid, with many open
circuits and shorts. In this example, the sizes of the matrices are

• A : 218 × 218;
• B : 218 × 1423;

and Q has a 400 × 400 full block so we did not store it but instead evaluate matrix-vector
products and solves involving BT B. See appendix for a mathematical description of the prob-
lem.

60 Algebraic Multigrid For Power Grid Networks

We consider the following algorithms
1. (MG-JAC)

(a) 1 Jacobi iteration as the pre-smoother.
(b) 1 V-cycle multigrid correction.
(c) 1 Jacobi iteration as the post-smoother.

2. (MG-CG)
(a) 8 conjugate gradient iterations with preconditioner diag(A) as the pre-smoother.
(b) 1 V-cycle multigrid correction.
(c) No post-smoother.

3. (CG-MG-JAC[2,2]) We use one MG-JAC V-cycle as a preconditioner of an outer
CG method. Here, we use two Jacobi iterations as the pre-smoother and another two
as the post-smoother.

4. (CG-MG-JAC[1,1]) We use one MG-JAC V-cycle as a preconditioner of an outer
CG method. Only one Jacobi iteration is used as the pre-smoother and another one
as the post-smoother.

The convergence history is showed below, where the x-axes stands for the number of
relaxation sweeps on the fine grid and the y-axes is the relative residual in 2-norm.

Figure 3
We notice that although the matrix in this case is larger than that of the previous example,

we could obtain the the same accuracy by carrying out approximately the same number of
iterations.

5. Conclusion. We have presented a new multigrid algorithm for saddle point systems
where the constraints are of either Dirichlet type or Neumann type. This new algorithm
essentially converts the saddle point system to a symmetric positive definite system where
more standard algorithms can be applied. Additionally, it avoids matrix-matrix multiplication
involving the projection operator associated with the constraints. This is done by means of a
special prolongator which guarantees that constraints are satisfied after the prolongation step.

REFERENCES

[1] W. L. B, V. E. H, S. MC, A Multigrid Tutorial, Second Edition, SIAM, Philadelphia,
2000.

Yao Chen and Ray Tuminaro 61

[2] P. V̌, J. M, M. B, Algebraic multigrid by smoothed aggregation for second and fourth
order elliptic problems, Computing, 56 (1996), pp. 179–196.

[3] , Convergence of algebraic multigrid based on smoothed aggregation, Numerische Mathematik, 88
(2001), pp. 559–579.

62 Algebraic Multigrid For Power Grid Networks

Appendix

A. Satisfying constraints via x0. We use Gaussian elimination to obtain a possible
solution x0 such that BT x0 = h. Thus

[BT , h]→ Gaussian elimination→ [B∗T , h∗]

so that B∗T is an upper triangular matrix. Then we do back-substitution on B∗T and assign all
free variables zero. In the case of a power grid circuit, the structure of B is simple. In fact,
the number of non-zero entries in B∗ is less than or equal to that of B. In particular, suppose
that the i-th row of B∗T is of Dirichlet type and (B∗T)i j is the non-zero entry. The Gaussian
elimination process will make all entries in the j-th column below (B∗T)i j zero and will not
create any new nonzeros. Suppose that the i-th row of B∗T is of Neumann type and (B∗T)i j1
and (B∗T)i j2 are the non-zero entries. Every time Gaussian elimination zeros out one non-zero
in (B∗T)k j1 , it might introduce at most one new non-zero in (B∗T)k j2 .

In summary, the total number of non-zero entries does not increase. So it is not nu-
merically difficult to find the solution x0. For the example appearing in the first section,
x0 = (3, 0, 0, 0, 0, 0, 0)T is an initial guess.

B. Prolongator Construction. First we exclude the trivial case Q = 0 where PT QAQP
is always zero. Since column vectors in B are linearly independent, Q = 0 only if B is a
square matrix. We can assume that B is not a square matrix, otherwise the initial guess x0 is
the solution.

Define U i to be a binary vector of length m indicating which fine grid nodes need to be
aggregated at the beginning of the i-th iteration. The k-th component of U i is

(U i)k =

{
0, if the k-th node is aggregated
1, if the k-th node has not been aggregated.

Let m be the number of rows in A. The following method generates a prolongation matrix P
with the required properties. Set i = 1 and

(U i)k =

{
0, if ∃ j, such that (B)k j is the only nonzero entry on the j-th column
1, elsewhere.

Repeat the following process until U i is a zero vector, or ‖U i‖2 = 0.
(1) Find an aggregate p by using the sparsity pattern of A, where p is a binary m-vector

and (p)k = 1 indicates that the k-th vertex is in the aggregate and (p)k = 0 indicates that it is
not .2 The nonzero entries of p form a subset of that of U.

(2) Define the k-th column of P as

(P)ki =

{
0, if (Qp)k × (U i)k = 0
1, if (Qp)k × (U i)k , 0.

(3) U i+1 ← U i − (P)∗i where (P)∗i is the i-th column of P.
(4) i← i + 1 This method has no matrix-matrix multiplications.
We introduce two lemmas.
L B.1 (A1). Given U i, if BT U i = 0, then after one iteration, we get a column (P)∗i

satisfying BT (P)∗i = 0.

2Typically, a graph algorithm is performed to group together a set of nearest neighbor entries in the graph of A.

Yao Chen and Ray Tuminaro 63

Proof. Rewrite the definition of (P)∗i as

(P) ji =

{
0, if (Qp) j = 0 or (U i) j = 0
1, elsewhere .

Define

v = BT (P)∗i

so we must show ∀k, vk = 0.

Case 1: (BT)k∗ corresponds to a Dirichlet row. This means that there is only one nonzero in
this row, (BT)k j.
(BT)k∗U i = 0 then implies that (U i) j = 0 and so P ji = 0. It follows that vk =

(BT)k∗(P)∗i = 0.
Case 2: (BT)k∗ corresponds to a Neumann row. Let the two nonzeros in this row be denoted

(BT)k j1 and (BT)k j2 .
(BT)k∗U i = 0 implies (U i) j1 = (U i) j2 . (1)
BT Q = 0 implies (BT)k∗Qp = 0, and so (Qp) j1 = (Qp) j2 . (2)
From equations (1) and (2) we can infer that

(P) j1i = (U i) j1 (Qp) j1 = (U i) j2 (Qp) j2 = (P) j2i

and thus (BT)k∗(P)∗i = 0.
So BT (P)∗i = 0.

L B.2 (A2). Assume BT (P)∗i = 0 and BT U i = 0. Define U i+1 ← U i − (P)∗i. Then
BT U i+1 = 0.

Proof. BT U i+1 = BT (U i − P∗i) = 0

Finally, we show that P has the desired properties.

T B.3. Let P be constructed by the algorithm above. Then, the following is true.
1. P is of full rank.
2. QP = P.
3. each row of P has at most one non-zero entry.

Proof.
(Property 3) By construction of the i-th column of P, P ji can only be nonzero if (U i) j = 1.
This only occurs if P jk = 0, k < i. (U i+1) j is then set to zero by the update (U i+1) j =

(U i) j − P∗i.

(Property 1) Follows Property 3 and the assumption that no column is entirely zero. We verify
that columns of P are orthogonal to each other, therefore P is of full rank.
(Property 2) To show QP = P, we verify that Q(P)∗i = (P)∗i, for the i-th column of P. It is
enough to show BT (P)∗i = 0, which is done inductively.

Base Case
U1 satisfies BT U1 = 0.
By Lemma (A1), BT (P)∗1 = 0.

Inductive Step
Assume BT U i = 0, BT (P)∗i = 0, then BT U i+1 = 0 and BT (P)∗i+1 = 0. These follow
directly from Lemma (A1) and Lemma (A2).
Repeat this process to obtain all columns of P.

64 Algebraic Multigrid For Power Grid Networks

Therefore BT p = 0 so QP = P.

For the example on page 1, the whole process to obtain P is given below.
1. i = 1.
2. Initialize U1 as

U1 = (0, 1, 1, 1, 1, 1, 0)T .

3. Repeat,
(a) Find an aggregate by examining A, gives p = (0, 1, 1, 1, 0, 0, 0, 1)T

(b) Evaluate Qp = (0, 1/2, 1, 1/2, 1/2, 1/2, 0)T

(c) Determine P = (0, 1, 1, 1, 1, 1, 0)T

(d) Update U2 ← U1 − P = 0
This loop is only executed once as U2 is empty. The prolongator contains only one column.
We evaluate A2 = PT AT = 3, which is non-singular.

C. The second numerical test example. Define Ω to be a square domain [0, 1]× [0, 1].
The left, right, top, and bottom edges are denoted Γl, Γr, Γt, and Γb respectively. Define Ω1 to
be [0.2, 0.4] × [0.2, 0.4], Ω2 to be [0.6, 0.8] × [0.6, 0.8].

Then

∆u = 0 on Ω −Ω1 −Ω2,

u = 1 on Γl,

u = 0 on Γr,

∇u · n = 0 on Γt,Γb, ∂Ω1,

and

|∇u| = 0 on ∂Ω2

which is discretized on a 512 × 512 uniform grid.

CSRI Summer Proceedings 2008 65

MULTIGRID CONSIDERATIONS FOR
STOCHASTIC PROJECTION SYSTEMS

ROBERT D. BERRY ‡, RAY S. TUMINARO §, AND HABIB N. NAJM ¶

Abstract. We are interested in employing algebraic multigrid methods to large linear systems associated with
stochastic projection systems. To this end, we first seek to understand some basic matrix properties of these linear
systems. In some cases, it is possible to give conditions for positive definiteness of the linear system associated with
the stochastic PDE as well as to gain some insight into the structure of this matrix. We then give a multigrid method
that is suitable for some of these systems. This method is primarily based on coarsening in the spatial direction. We
also explore some coarsening in the stochastic direction and present some preliminary findings.

1. Introduction. We consider diffusion in a one-dimensional medium with a stochastic
diffusivity. Let (Ω,M, µ) be a (probability) measure space, where Ω is a sample space,M is
a σ-algebra, and µ is a probability measure. Our diffusion will occur on a domain [0, 1] ⊂ R.

Consider a stochastic diffusivity coefficient λ : Ω × [0, 1] → R. We wish to solve the
diffusion equation

−divx(λ(ω, x)∇xu(ω, x)) = f (ω, x)

with boundary conditions u(ω, 0) = u(ω, 1) = 0. In general, u is a function of both space and
the sample ω ∈ Ω. Since we are in one space dimension, we write

−
∂

∂x

(
λ
∂u
∂x

)
= f . (1.1)

Now, let {ξi(ω)}i∈N be a sequence of independent uniform random variables (RVs) on
Ω, that is ξi : Ω → [−1, 1] for each i. Then any random variable A : Ω → R (with proper
regularity) may be represented as a chaos expansion:

A(ω) =
∞∑

k=0

αkΨk(ξ1(ω), ξ2(ω), . . .)

for α∗ ∈ R and where Ψ∗ are µ−orthonormal functions.
We expand u, λ, and f by writing

u(ω, x) =
∑

k

uk(x)Ψk(ω),

λ(ω, x) =
∑

k

λk(x)Ψk(ω), and (1.2)

f (ω, x) =
∑

k

fk(x)Ψk(ω).

so that

uk(x) =
∫
Ω

u(ω, x)Ψk(ω) dµ(ω),

λk(x) =
∫
Ω

λ(ω, x)Ψk(ω) dµ(ω), and

fk(x) =
∫
Ω

f (ω, x)Ψk(ω) dµ(ω).

‡University of Pittsburgh, rdb6@pitt.edu
§Sandia National Laboratories, rstumin@sandia.gov
¶Sandia National Laboratories, hnnajm@sandia.gov

66 Multigrid for Stochastic Projection

Substituting these expressions into (1.1), we obtain

−
∑

j,k

∂

∂x

(
λk(x)

∂

∂x
u j(x)

)
Ψ j(ω)Ψk(ω) = f (ω, x).

Multiplying both sides by Ψi(ω) and integrating over Ω yields:

−
∑

j,k

Mi jk
∂

∂x

(
λk(x)

∂

∂x
u j(x)

)
= fi(x)

where

Mi jk =

∫
Ω

ΨiΨ jΨk dµ.

The stochastic Laplace operator ∆, projected in this polynomial chaos basis, may be
thought of as a matrix of operators, whose entries (or blocks) ∆i j are diffusion operators, each
with diffusivity

λi j =
∑

k

Mi jkλk.

For convenience then we may also use the alternative notation∑
j

−∆i ju j = fi. (1.3)

This operator acts on a vector whose elements are the functions u j. In each of these expres-
sions the random variables have been averaged over and we are left with a deterministic
system of partial differential equations. Once one solves for the {uk(x)}, the properties of
u(ω, x) are determined.

We wish to numerically solve this system. In order to accomplish this, we limit the
polynomial order of approximation of u and f to be P, the order of approximation of λ to be
L, and the number of random variables are limited to N. In discretizing the spatial variable x,
the operators ∆i j are approximated by (tri-diagonal) blocks Di j, so that it is the system

Dũ = f̃

that we want to solve by multigrid methods. To do this, we first wish to understand some of
the basic properties of ∆ (inherited by D).

2. Properties of Mi jk. The constants Mi jk determine the structure of the operator ∆.
First, since we are using orthonormal polynomials, the operator is symmetric: ∆i j = ∆ ji.
If ∆ is also positive-definite, methods such as conjugate gradient may viably be applied in
solving this system. In addition to symmetry, ∆ has a very particular sparse structure which
is associated with the fact that many of the Mi jk’s are zero.

Consider the case when there is only one RV ξ, so Ψi is a polynomials of order i of only
one variable. When the product ΨiΨ j is orthogonal to Ψk, then Mi jk = 0. By construction of
these polynomials, Ψk is orthogonal to any polynomial of order less than k. Thus, when the
order of ΨiΨ j is less than the order of Ψk, in other words, if i+ j < k, then Mi jk = 0. This fact
is indeed symmetric in i, j, and k.

The symmetries of ξ give further information about M. For instance, if this measure has
mirror-symmetry about some point (such as Gaussian or Uniform RVs), then Ψk is “odd”

R.D. Berry, R.S. Tuminaro, and H.N. Najm 67

or “even” (with respect to the symmetry) if k is. In these cases, the integral of an “odd”
polynomial is zero. Thus Mi jk = 0 if i + j + k is odd.

It is not clear, a priori, that ∆ (or D) is positive definite; the blocks of D off the diagonal
include values of Mi jk which may be quite large. For instance, it can be shown that when Ψk

are univariate (normalized) Hermite polynomials,

Mi jk =

√
i! j! k!(

i+ j−k
2

)
!
(

j+k−i
2

)
!
(

k+i− j
2

)
!

when this expression makes sense, and Mi jk = 0 otherwise.

3. Necessary Conditions for a Positive Definite Diffusion. It is natural to ask when the
operator on the l.h.s. is positive definite. The energy functional associated with this operator
is (see [1])

K(u) = −
∫ 1

0

∑
i, j

ui(x)∆i ju j(x) dx.

When this functional is positive definite, the stochastic Laplacian is also. First integrating by
parts (assuming sufficient regularity to interchange summation and integration)

K(u) = −
∫ 1

0

∑
i, j

ui
∂

∂x

(
λi j

∂

∂x
u j

)
dx =

∫ 1

0

∑
i, j

∂ui

∂x

(
λi j
∂u j

∂x

)
dx.

By definition of Mi jk we obtain

K(u) =
∑
i, j,k

∫ 1

0
Mi jkλk(x)

∂ui

∂x
∂u j

∂x
dx

=

∫ 1

0

∫
Ω

∑
k

λk(x)Ψk

 ∂

∂x

∑
i

ui(x)Ψi

 ∂

∂x

∑
j

ui(x)Ψ j

 dµ dx

=

∫ 1

0

∫
Ω

λ(ω, x)
(
∂

∂x
u(ω, x)

)2

dµ(ω) dx.

A sufficient condition for K to be positive definite is λ(ω, x) ≥ ε > 0, (dµ dx)-almost surely
(a.s.). For u ∈ H1, this condition is also necessary. This can be seen by a standard argu-
ment: choosing (∂xu)2 to approximate a delta-distribution supported within any measurable
set where λ ≤ ε, letting ε→ 0 we contradict K(u) > 0.

This strong necessary condition can be weakened if u resides in some other function
space. This has particular implications for using unbounded random variables, such as in
Gaussian models. Choosing u in a space where the delta-approximation cannot be made
may lead to situations where λ > 0 a.s. is no longer necessary for positive definiteness.
For instance, when the Ψk(ξ1, ξ2, . . .) are polynomials, and the order of the expansion of u
is truncated at a fixed order P, then one may construct an example where µ{ω : λ(ω) <
0} > 0 and K is positive definite. This is because in truncating the expansions, our solution
space does not contain a test function (such as a delta distribution approximation) which can
capture the set in Ω × [0, 1] for which λ ≤ 0. These situations appear most frequently when
employing unbounded RV’s, but may occur for any statistical model. Such examples exists
in the literature (see e.g. [3, 4]), and we shall construct one below. If a truncation is meant as
an approximation technique (such as for computational reasons), it may not be appropriate to
allow µ{ω : λ(ω) < 0} > 0.

68 Multigrid for Stochastic Projection

As a statistical model for λ, consider for ε > 0,

λ(x, ω) = 1 + εξ(ω),

where ξ is a standard Gaussian random variable. The only case when λ is a.s. positive is for
ε = 0. We expand u and f as

u(ω, x) =
p∑

k=0

uk(x)φk(ξ) and

f (ω, x) =
p∑

k=0

fk(x)φk(ξ)

where φk is the k-th order (normalized) Hermite polynomial. Since λ has no spatial depen-
dence, (1.3) becomes

p∑
j=0

Ai j(−u j)xx = fi

where

A =

1 −ε

−ε 1 −ε
√

2
−ε
√

2 1 −ε
√

3

−ε
√

3
. . .

. . .

. . . 1 −ε
√

p
−ε
√

p 1

.

The operator in this example is positive definite if A is positive definite. For each p, there is
an ε∗(p) for which if |ε| < ε∗(p), then A is positive definite (despite λ not being a.s. positive).
Suppose A is positive definite. Then, applying Sylow’s Criterion to the bottom right 2 × 2
minor, we have that

1 − pε2 > 0

whereby

|ε| <
1
√

p
.

Allowing ε→ ε∗(p), we obtain an upper bound:

ε∗(p) ≤
1
√

p
.

In the limit p→ ∞, ε must be zero in order for the operator to be positive definite. Therefore
(in the limit) a diffusion operator with Gaussian diffusivity is not positive definite.

4. The Karhunen-Loeve Expansion. Now we introduce a well-known expansion for
stochastic functions (such as λ), known as the Karhunen-Loeve (KL) expansion. When the
(spatial) covariance structure

C(x, y) = E{λ(x)λ(y)}

R.D. Berry, R.S. Tuminaro, and H.N. Najm 69

for a random variable λ(ω, x) is known, the KL expansion provides a statistical model of the
form

λ(ω, x) =
∑

k

λk(x)θk(ω),

where {θk}k∈N are a collection of RVs. This expansion decouples the variables x and ω. Posing
such a model for λ, and selecting a model which is efficient in the sense of least-squares
convergence, provides that the λk(x) are eigenfunctions of the covariance structure C(x, y). In
particular,

λk(x) =
√

akφk(x)

where ∫
C(x, y)φk(y) dy = akφk(x)

and the φk are orthonormal with respect to C.
Furthermore, (by orthogonality) the random variables θk may be explicitly formed as

θk(ω) =
1
ak

∫
λ(ω, x)λk(x) dx

and are mean-zero and uncorrelated:

E{θk} = 0 E{θiθ j} = δi j.

This formulation has the advantage that the chaos expansion is only first-order. If the
random variables are symmetrically distributed about some point, then our diffusion operator
has on its diagonal the expectation-mode diffusion operators:

∆ii = ∆λ0 .

This is determined by Miik being zero unless i + i + k is even. Since our model is linear in the
RV’s, k ∈ {0, 1}. Thus k = 0, and so only λ0 appears along the (block) diagonal. This means
that the diagonal blocks of D are identical to a standard deterministic diffusion operator. If
the corresponding diagonal block entries are in some sense larger, the implication is that a
standard multigrid method created to solve the diagonal blocks should be effective.

When the θk are Gaussian RV’s, they must be independent as they are uncorrelated. Yet
in this case we have the unfortunate difficulty that models for the diffusivity which give a
Gaussian KL expansion (where the RV’s enter linearly) will not represent a positive definite
λ, as previously illustrated. When the representations are finite and the variance modes of λ
are small enough, however, one may still have a positive definite approximation.

Unfortunately, these θk are not in general independent so that in order to sample a pro-
cess employing this framework the joint distribution generating these θk must also be found.
Furthermore, the joint distribution of the θk determines the constants Mi jk, which would have
to be calculated for any given stochastic model for λ under consideration. Since the constants
also determine the structure of our operator, little can be said about the structure of ∆, a priori.

Noting such computational limitations, we project the random variables θk onto a uniform-
PC basis (on the variables ξ). Our model is then of the form

λ(ω, x) =
∑

k

λk(x)Ψk(ξ1(ω), ξ2(ω), . . .)

70 Multigrid for Stochastic Projection

where the Ψk is the Legendre Polynomial Chaos for the RVs {ξk} independent and uniform on
[−1, 1]. Employing uniform RVs also has other obvious computational advantages, including
ease of generating and boundedness. The Mi jk’s may also be computed once and re-used in
subsequent stochastic models. Uniform RVs also lend themselves to use in multi-wavelet
type expansions.

5. Diffusivity Modes: Truncation, Decay Rates, and Positive Definiteness. For com-
putational purposes, one must truncate the order of expansion for u, f , and λ, as well as
employ a finite number of random variables. The immediate question is: to which orders
should we truncate? Recall that by the orthogonality of the polynomial basis, Mi jk = 0 for

i + j < k, k + i < j, or j + k < i.

This implies that if the orders of u and f are limited to P, then all non-zero modes of λ of
order up to L = 2P are present in the system. For expansions of the diffusivity to these orders,
it is possible that none of the operators (blocks) ∆i j are zero.

Now, if λ is represented as a finite-order polynomial in ξ, its coefficients (in the stan-
dard basis {1, ξ, ξ2, . . . , ξn, . . .}) will decay appropriately to ensure convergence. When this
polynomial is expressed in the Legendre basis, we obtain a (finite) linear combination of the
representation of each of the ξn. In this change of basis, the Legendre coefficients of each
ξn decay as exp(−k2). Therefore, the coefficients λk will also. Implications of this are that
“relatively high” order Legendre expansions are unnecessary.

0 10 20 30 40 50 60 70 80 90 100
0

0.02

0.04

0.06

Li
ne

ar
 S

ca
le

index

λ Coefficents (Decay)

0 10 20 30 40 50 60 70 80 90 100
10−30

10−20

10−10

100

Lo
g

Sc
al

e

F. 5.1. Plot of λk for λ = ξ100.

To ensure positivity of λ when the PC expansion employs unbounded random variables
(such as Gaussian RVs) the polynomial’s highest order term must be even, and λ0 must be
large enough to ensure the absolute minimum is positive. The constraints for the coefficients
for a model utilizing bounded random variables (such as Uniform RVs) are a bit weaker: λ0
need only be large enough.

6. Multigrid Methods. For modeling stochastic diffusion, the almost sure positivity of
the diffusivity has been shown to be a strong requirement, eliminating linear-Gaussian mod-
els. This limits the utility in employing a KL expansion: in general the random variables

R.D. Berry, R.S. Tuminaro, and H.N. Najm 71

appearing are not independent, and so their joint distribution must be given in order to calcu-
late the (structure) constants Mi jk.

Because of the positivity requirements, we prefer to expand the stochastic variables via
the polynomial chaos for independent and identically distributed random variables. Com-
putationally, bounded RVs are more natural, so we expand on the PC for uniform random
variables. Furthermore, the lower-order modes in this expansion dominate significantly.

We are interested in solving the PC representation of the stochastic diffusion equation.
We truncate these expansions to order P for u and f , to order L for λ, and use N random
variables. If we discretize on a spatial grid of M points, then in our system

Du = f (6.1)

the matrix D is symmetric, positive definite, and square of size

(P + N)!
P!N!

(M − 1). (6.2)

Note that the size of this matrix does not depend on L, the expansion order of λ. L does, how-
ever, influence the sparsity of D. For even modest choices of P and N, this system becomes
quite large.

For our initial computations, we will consider a Legendre PC with L = 1. In this case,
the diagonal blocks are simply a diffusion operator with diffusivity λ0, the expectation-mode,
and D is quite sparse.

F. 6.1. Non-zero structure of D for N = 4, P = 4, and (left to right) L = 1, L = 2, or L = 3.

A multigrid method is employed to iteratively approximate solutions to large linear sys-
tems. The goal is to find a representative system which is much smaller, and in a sense
interpolate its solution back to the original large system. Often several other systems, in-
termediate in size, are employed to transition from the large to the small system, and then
back. The operators used to transfer between the various levels (or grids) are prolongators
(or interpolators). On each level, an error-smoothing function (or relaxation method) is also
employed. (For more details see e.g. [2].)

A multigrid method is fully specified once the prolongation matrices

{I(1), I(2), . . . , I(m)}

and the relaxation (or smoothing) function R are defined. An outline for this technique is
given in the following algorithm, often called a V-cycle.

1.1 Relax n1 times on A(1)v(1) = f(1) with initial guess v(1).
1.2 Compute the residual r(1) ← f(1) − A(1)v(1).
1.3 Project the system into the next grid:

A(2) ← I(1)A(1)IT
(1), v(2) ← IT

(1)v(1), f(2) ← IT
(1)r(1).

72 Multigrid for Stochastic Projection

2.1 Relax n2 times on A(2)v(2) = f(2) with initial guess 0.
2.2 Compute . . .
2.3 Project . . .

...
m.1 Solve exactly A(m)v(m) = f(m).

(m-1).4 Correct finer solution: v(m−1) ← v(m−1) + I(m−1)v(m).
(m-1).5 Relax νm−1 times on A(m−1)v(m−1) = f(m−1) with initial guess v(m−1).
(m-2).4 Correct . . .
(m-2).5 Relax . . .

...
1.5 Relax ν1 times on A(1)v(1) = f(1) with initial guess v(1).

- Repeat this cycle until it converges.

What remains is to choose appropriate interpolation matrices and a good smoother.

6.1. Geometric Multigrid. Since our stochastic diffusion operator is a matrix of deter-
ministic diffusion operators in the PC projection, a natural choice for each of the I(k) is a block
diagonal structure which corresponds to the block structure of D (i.e., the Di j). Each diagonal
block in the prolongator linearly interpolates in the spatial dimension vectors corresponding
to each uk in (1.2). This effectively coarsens each Di j in (1.3) via linear interpolation. The
number of blocks, however, remains the same as one coarsens. When the stochastic system is
positive definite, a Gauss-Seidel smoother acting on the entire matrix is sufficient. This kind
of spatial coarsening is well understood. One difficulty may remain: at the coarsest geometric
grid possible (M = 2), the system may still be quite large in a practical model, with moderate
values for P and N.

A V-cycle multigrid method where m = 7 levels are used on a spatial grid of 128 uni-
form intervals. Iterations are terminated when the residual is reduced by 106. Notice that the
number of iterations in Table 6.1 is constant over a variety of problems.

T 6.1
Convergence Results for Geometric Multigrid

P N modes of u size of D iterations
3 10 286 36,322 6
3 12 455 57,785 6
5 10 3003 381,381 6
5 12 6188 785,867 6

6.2. Spectral Projections. In light of the fact that we are dealing with polynomial ex-
pansions, another natural way to “coarsen” the system is to consider lower-order expansions.
These I(k) matrices would increase N or P, so that the IT

(k) effectively truncate the expansion of
u to a smaller order, or reduce the number of random variables. This approach is also natural
from the standpoint that the Gauss-Seidel smoother converges faster for high order modes
and for random variables which enter the expansion via diffusivity modes λk(x) which have
high (spatial) frequencies.

While Gauss-Seidel converges for any symmetric, positive definite matrix, its smoothing
properties in the stochastic direction are somewhat less understood. In general we have found
that first coarsening spatially (e.g., until m = 2) and then coarsening in the RV dimensions
is far more effective, from a multigrid convergence perspective, than conversely. One must

R.D. Berry, R.S. Tuminaro, and H.N. Najm 73

be careful in mixing spectral coarsening with the standard spatial geometric coarsening. In
considering spatial grids which are more coarse, the Gauss-Seidel smoother is able to improve
the convergence of lower frequency errors. If such spatial coarsening occurs after spectral
coarsening, low frequency errors in modes of u that are eliminated will not be corrected.

Even in situations where the geometric-only Gauss-Seidel smoother converges quickly,
a spectral projection will significantly reduce the size of the system, improving the ability of
machines to handle larger systems.

6.3. Algebraic Multigrid. An algebraic multigrid (AMG) method could also be devel-
oped based along similar reasoning as the geometric multigrid algorithm. In particular, one
can consider a block diagonal structure for the prolongator matrix. Each block diagonal of
the prolongator is generated by applying a standard AMG method for deterministic equations.
Specifically, the standard AMG algorithm is applied to each Dii. These prolongators are then
used to generate the block diagonal prolongator for the full system. Another possibility is to
build a block prolongator where each block corresponds to piecewise-constant interpolation.
Following the smoothed aggregation multigrid method [5, 6], this prolongator could then be
improved via a Jacobi algorithm that is effectively applied to each column of the piecewise-
constant block prolongator. One interesting aspect of this method is that the block Jacobi
algorithm uses the entire matrix D (including the off-diagonal blocks) and so this prolonga-
tor uses information from both the diagonal and off-diagonal blocks of D. These algebraic
multigrid variants will be explored in the future.

7. Conclusions. We have shown necessary and sufficient conditions on stochastic dif-
fusivity in order for the diffusion operator to be positive definite. The a.s. positivity of λ may
be violated in a truncation solution space.

For computational purposes, we project the KL expansion onto the Legendre PC chaos.
Furthermore, we have investigated some basic matrix properties of these linear systems. In
some cases we have illustrated the structure of these systems.

We then gave a multigrid method that is suitable for some of these systems. This method
is primarily based on coarsening in the spatial direction. We also explored some coarsening
in the stochastic directions and presented some preliminary findings.

While Gauss-Seidel converges for any symmetric, positive definite matrix, its smoothing
properties in the stochastic direction are somewhat less understood. In general we have found
that first coarsening spatially (e.g., until m = 2) and then coarsening in the RV dimensions is
far more effective, from a multigrid convergence perspective, than conversely.

From here, we wish to understand the role of stochastic domains of small (or zero) dif-
fusivity. Such considerations will have a strong influence on an AMG approach to solving
these stochastic diffusion equations.

REFERENCES

[1] I. B̌, R. T, E. Z, Galerkin finite element approximations of stochastic elliptic partial
differential equations, SIAM J. Numer. Anal., 42 (2004), pp. 800–825.

[2] W. L. B, V. E. H, S. MC, A Multigrid Tutorial, Second Edition, SIAM, Philadelphia,
2000.

[3] H. E D. F, Solving the stochastic steady-state diffusion problem using multigrid, IMA J. Numer.
Anal., 27 (2007), pp. 675–688.

[4] O. L M, O. K, B. D, H. N, R. G, A multigrid solver for two-dimensional
stochastic diffusion equations, Comput. Methods Appl. Mech. Engrg., 192 (2003), pp. 4723–4744.

[5] P. V̌, J. M, M. B, Algebraic multigrid by smoothed aggregation for second and fourth
order elliptic problems, Computing, 56 (1996), pp. 179–196.

[6] , Convergence of algebraic multigrid based on smoothed aggregation, Numerische Mathematik, 88
(2001), pp. 559–579.

74 CSRI Summer Proceedings 2007

D. Ridzal and S.S. Collis 75

Discrete Mathematics and Informatics

Discrete mathematics is the study of fundamentally discrete mathematical structures with
application to problems arising in the computing sciences. Likewise, the field of informatics
includes processing and reasoning about collected information or data — often to identify
associations and to extract knowledge, with the objective to enable an informed decision–
making process. Articles in this section encompass both of these disciplines with application
to numerical linear algebra, data classification, and combinatorial optimization.

Wolf and Boman study how to best distribute sparse matrices among processors in or-
der to reduce communication in parallel sparse matrix–vector multiplication. They propose
improvements to a previously devised nested disection algorithm and show that the new ap-
proach outperforms the commonly used “fine–grain” method in many cases. Gilpin and
Dunlavy explore the advantages of using heterogeneous ensemble classifiers in multi–class
data classification. They show that heterogeneous ensembles, defined as sets of classifier
models created using several types of classification algorithms, can lead to performance im-
provements over homogeneous ensembles. Additionally, they introduce the H soft-
ware framework, which will be used in future classification studies. Buluç and Boman de-
scribe a novel attempt at scalable and robust multilevel partitioning of hypergraphs. Hyper-
graphs are generalizations of graphs in which the interaction between vertices can be beyond
pairwise. They present two promising algorithms for hypergraph coarsening that are based
on a new vertex aggregation paradigm. Benavides et al. describe SUCASA, the Solver Utility
for Customization with Automatic Symbol Access. SUCASA is a mechanism for generating
(integer) linear programming solvers derived from the parallel integer and combinatorial opti-
mization package PICO that integrate algebraic modeling constructs. It allows application de-
velopers to access parameters, constraints, and variables from the application algebraic model
within PICO, thereby enabling rapid development of problem–specific incumbent heuristics
and cutting planes.

D. Ridzal
S.S. Collis

December 11, 2008

76 CSRI Summer Proceedings 2007

CSRI Summer Proceedings 2008 77

IMPROVEMENTS TO A NESTED DISSECTION APPROACH FOR
PARTITIONING SPARSE MATRICES

MICHAEL M. WOLF∗ AND ERIK G. BOMAN†

Abstract. We consider how to distribute sparse matrices among processes to reduce communication in parallel
sparse matrix-vector multiplication. In previous work, we introduced an exact graph model for 2d matrix partitioning
and an algorithm based on nested dissection to solve this model. Our results indicated that our new approach was
superior to traditional 1d partitioning and comparable to the fine-grain hypergraph method. We showed that our
nested dissection method has two advantages over the fine-grain method: it was faster to compute, and the resulting
distribution required fewer communication messages.

In this paper, we revisit our previous nested dissection partitioning algorithm and improve upon the previous
algorithm. We solve a second, smaller partitioning problem to further reduce the communication volume. Our
improved implementation greatly reduces the communication volume over our previous implementation for several
matrices. With this improved implementation, our method seems to be superior to the fine-grain method for most
structurally symmetric matrices and comparable for some of the nonsymmetric matrices.

1. Introduction. Sparse matrix-vector multiplication (SpMV) is a common kernel in
many computations, e.g., iterative solvers for linear systems of equations and PageRank com-
putation for ranking web pages. Often the same matrix is used for many iterations. An im-
portant combinatorial problem in parallel computing is how to distribute the matrix and the
vectors among processes to minimize the communication. Such “communication” is also
important on serial computers with deep memory hierarchies, where slow memory is much
slower than fast memory. Since processor speeds increase much more rapidly than memory,
we expect memory latency and bandwidth to grow in importance. Our present work is rel-
evant to both parallel computation on distributed memory computers and serial computation
on machines with hierarchical memory, but we phrase our work in the context of parallel
computing.

Sparse matrix-vector multiplication y = Ax is usually parallelized such that the process
that owns element ai j computes the contribution ai jx j. This is a local operation if x j, yi and
ai j all reside on the same process; otherwise communication is required. In general, the
following four steps are performed [6, 20]:

1. Expand: Send entries x j to processes with a nonzero ai j for some i.
2. Local multiply-add: yi := yi + ai jx j.
3. Fold: Send partial y values to relevant processes.
4. Sum: Sum up the partial y values.

In this paper, we address sparse matrix-vector partitioning.

D 1.1. Sparse matrix-vector partitioning: Given a sparse matrix A, an integer
k > 1, and ε > 0, compute

(i) a matrix partition A =
∑k

i=1 Ai where each Ai contains a subset of the nonzeros of A,
such that nnz(Ai) ≤ (1 + ε)nnz(A)/k, ∀i,

(ii) partitions of the input and output vectors,
such that when distributed across processes by these partitions, the communication volume
in sparse matrix-vector multiply, y = Ax, is minimized.

This problem is NP-hard since it contains as a special case hypergraph partitioning. It has
been observed [6, 3] that the matrix and vector partitioning problems can be separated. For

∗Dept. of Computer Science, Univ. of Illinois at Urbana-Champaign, mmwolf@illinois.edu
†Scalable Algorithms Dept., Sandia National Laboratories, egboman@sandia.gov

78 Improved Nested Dissection Approach to Sparse Matrix Partitioning

any given matrix distribution (partition), it is fairly easy to find a “compatible” vector par-
tition and these together give a solution to the combined matrix-vector problem. Additional
objectives can be minimized in the vector partitioning phase [3, 4]. We focus on the matrix
partitioning step but simultaneously obtain a compatible vector partitioning as well.

By far, the most common way to partition a sparse matrix among processors is to use a
1d scheme where each process is assigned the nonzeros for a set of rows or columns. This
approach has two advantages, simplicity for the user and only one communication phase (not
two). The simplest 1d method is to assign ≈ n/p consecutive rows (or columns) to each
process, where n denotes the number of rows and p the number of processes (Figure 1.1).
However, it is often possible to reduce the communication by partitioning the rows in a
non-contiguous way, using graphs, bipartite graphs, or hypergraphs to model this problem
(Subsections 2.1 - 2.3) [15, 6].

F. 1.1. 1d row and column partitioning of a matrix. Each color denotes a part that is assigned a different process.

Recently, several 2d decompositions have been proposed [7, 8, 20]. The idea is to reduce
the communication volume further by giving up the simplicity of the 1d structure. The fine-
grain distribution [7] is of particular interest since it is the most general. We outline a graph
model that also accurately describes communication in fine-grain distribution. In the symmet-
ric case, this reduces to a standard graph. This led to a new graph-based “nested dissection
partitioning algorithm” (Section 3). This nested dissection partitioning algorithm is related
to previous nested dissection work for parallel Cholesky factorization [13, 14]. An important
aspect to both our partitioning method and the previous parallel Cholesky factorization work
is that communication is limited to separator vertices in the corresponding graph.

The rest of this paper is organized as follows. In Section 2 we discuss 1d and 2d data
distribution. In Section 3, we review our nested dissection partitioning algorithm and our
initial implementation of this algorithm. In particular, we discuss using this algorithm to
partition structurally symmetric matrices in Subsection 3.1 and nonsymmetric matrices in
Subsection 3.2. In Section 4, we outline new improvements to our original algorithm. Finally,
we present numerical results in Section 5 that validate our general approach and our improved
implementation.

2. Background: 1d and 2d Distributions.

2.1. 1d Graph Model. The standard graph model is limited to structurally symmetric
matrices. In this case, the graph G is defined such that the adjacency matrix of G has the
same nonzero pattern as the matrix A. Each row (or column) in A corresponds to a vertex
in G. A partitioning of the vertices in G gives a partitioning of the rows (columns) in A.
The standard objective is to minimize the number of cut edges, but this does not accurately
reflect communication volume. Figure 2.1 illustrates this. Twice the number of cut edges
(highlighted in magenta) yields a communication volume of 6 words, which overcounts the
correct volume of 4 words. The problem is that vertices 1 and 8 are counted twice in the
metric but each only contributes one word to the volume. The communication required is
associated with the boundary vertices, so a better metric is to minimize the boundary vertices
(4 words for Figure 2.1). This is an exact metric for bisection, while for k > 2 one should
also take into account the number of adjacent processes.

M.M. Wolf and E.G. Boman 79

3

4
5

6

1
2

7

1 873 542 6
1

3
2

8
7
6
5
4

8

F. 2.1. 1d graph partitioning of matrix into two parts. Correct communication volume is 4 words. Communi-
cation of highlighted vertices is overcounted in edge metric.

2.2. 1d Bipartite Graph Model. The graph model works poorly on nonsymmetric
square matrices because they need be symmetrized, and does not apply to rectangular ma-
trices. The bipartite graph model was designed to rectify this [15]. The bipartite graph
G = (R,C, E) is defined such that vertices R corresponds to rows, C corresponds to columns,
and edges E correspond to nonzeros. The standard (simplest) objective is to partition both R
and C such that the number of cut edges is minimized. Only one of the vertex partitionings
(either R for rows, or C for columns) is used to obtain a 1d matrix partitioning. Again, the cut
edges do not correctly count communication volume, and boundary vertices should be used
instead.

2.3. 1d Hypergraph Model. Aykanat and Catalyurek introduced the hypergraph model
to count communication volume accurately [6]. A hypergraph generalizes a graph. Whereas a
graph edge contains exactly two vertices, a hyperedge can contain an arbitrary set of vertices
[1, 2]. There are two 1d hypergraph models. In the row-net model, each column is a vertex
and each row a hyperedge, while in the column-net model, each row is a vertex and each
column a hyperedge. The objective is to find a balanced vertex partitioning and minimize the
number of cut hyperedges. The communication volume is

∑
i(λi − 1), where λi is the number

of parts that touch hyperedge i. Finding the optimal balanced vertex partitioning is NP-hard
but in practice good partitions can be found in polynomial time [6, 11].

2.4. 2d Matrix Distributions. Although the simplicity of 1d distributions can be ad-
vantageous, the communication volume can often be reduced by using 2d distributions. Fig-
ure 2.2 shows an example where 1d partitioning will always be poor. Consider the arrowhead
matrix of dimension n, and bisection (k = 2). Due to a single dense row and column, any load
balanced 1d partitioning will have a communication volume of approximately (3/4)n words.
The optimal volume is actually 2 words as demonstrated in the 2d partitioning of Figure 2.2
(right).

F. 2.2. Arrowhead matrix with 1d (left) and 2d (right) distribution, for two processes (red and blue). The
communication volumes in this example are eight and two words, respectively.

80 Improved Nested Dissection Approach to Sparse Matrix Partitioning

2.5. Current 2d Methods. Two-dimensional partitioning is a more flexible alternative
to one-dimensional partitioning. For dense matrices, it was realized that a 2d block (checker-
board) distribution reduces communication since communication is limited to process rows
and columns. For sparse matrices, the situation is more complex. Several algorithms have
been proposed to take advantage of the flexibility afforded by a two-dimensional partitioning
but none have become dominant. Catalyurek and Aykanat proposed both a fine-grain [7] and
a coarse grain [8] decomposition, while Bisseling and Vastenhouw later developed the Mon-
driaan method [20]. The coarse-grain method is similar to the 2d block decomposition in the
dense case, but is difficult to compute and often gives relatively high communication volume.
The Mondriaan method is based on recursive 1d hypergraph partitioning and thus is relatively
fast but still produces partitionings with low communication cost.

The most flexible approach to matrix partitioning is to allow any nonzero to be assigned
any part (process). This is the idea underlying the fine-grain method [7]. The authors propose
a hypergraph model that exactly represents communication volume. In the fine-grain hyper-
graph model, each nonzero corresponds to a vertex, and each row and each column corre-
sponds to a hyperedge. Catalyurek and Aykanat proved that this fine-grain hypergraph model
yields a minimum volume partition when optimally solved [7]. As with the 1d hypergraph
model, finding the optimal partition of the fine-grain model is NP-hard. This hypergraph can
be partitioned into k approximately equal parts cutting few hyperedges using standard one-
dimensional partitioning algorithms and software. This usually takes significantly longer than
a one-dimensional partitioning of a typical matrix since the fine-grain hypergraph is larger
than a 1d hypergraph model of the original matrix. In general, the partitioning of the fine-
grain method with the one-dimensional algorithms produces good quality partitions. Thus,
our goal in developing new two-dimensional methods is to produce similar quality partitions
to fine-grain in a shorter runtime.

3. A Vertex Separator Partitioning Algorithm.

3.1. Symmetric Case. In this subsection we study structurally symmetric matrices,
while the nonsymmetric case is analyzed in Subsection 3.2. First, we present an accurate
graph model for communication volume in matrix-vector multiplication. We restrict our at-
tention here to symmetric partitioning schemes, where ai j and a ji are assigned the same part.
We partition both the vertices and edges, which distinguishes our approach from the 1d graph
model and allows for 2d partitioning. A vertex incurs communication iff there are incident
edges that belong to a different part. The volume depends on how many parts are represented
among the incident edges.

T 3.1. Let G(V, E) be the graph of a symmetric sparse matrix. Let E(v) denote
the set of edges incident to vertex v. Let π(v) and π(e) denote the parts to which v and
e belong, respectively. Then the communication volume in matrix-vector multiplication is
2
∑

v∈V (|π(v) ∪ π(E(v))| − 1).
The factor two arises because any communication occurs in both phases (expand and fold).
This exact graph model yields a minimum volume balanced partition for sparse symmetric
matrix-vector multiplication when optimally solved.

Figure 3.1 shows an example of the exact graph model for 2d symmetric partitioning
of matrices. The graph on the left corresponds to the symmetric matrix (partitioned on the
right). The edges and vertices in the graph are partitioned into two parts (represented by cyan
and red). The vertices that have incident edges belonging to a different part (and thus incur
communication) are highlighted in green. Each contributes two words to the communication
volume of the resulting matrix-vector multiplication. The matrix shows the 2d symmetric
matrix partition obtained from the partitioned graph. The partition of the diagonal entries (as

M.M. Wolf and E.G. Boman 81

1 873 542 6
1

3
2

8
7
6
5
43

4

56

1 2

7 8

F. 3.1. 2d graph bisection for symmetrically partitioned matrix and resulting matrix partition. Part (color)
of graph edge corresponds to symmetric pair of off-diagonal nonzeros.

V0 S V1

F. 3.2. Bisection. Vertex separator (gray) partititions vertices into disjoint subsets (V0,V1, S).

well as the vector entries) corresponds to the partition of the graph vertices. The partition of
the off-diagonal entries corresponds to the partition of the edges in the graph.

If we solved this exact graph model optimally, we would obtain a balanced partition to
minimize communication volume for resulting matrix-vector multiplication. However, this
problem is NP-hard. In the next two subsubsections, we describe an algorithm for solving
this exact graph model suboptimally in polynomial time (assuming the vertex separator is
found in polynomial time). One constraint that we impose on our algorithm is that the vertex
and edge partitions are compatible. A vertex partition is compatible with an edge partition
if every vertex belongs to the same part as one of its incident edges. Similarly, an edge
partition is compatible with a vertex partition if every edge belongs to the same part as one
of its two vertices. There is no reason to violate this constraint since it will only increase the
communication volume.

3.1.1. Bisection. For simplicity, we consider bisection first. In the next subsubsection
we generalize to k-way partitioning for k > 2 using recursive bisection. First we compute a
small balanced vertex separator S for the graph using any vertex separator algorithm. This
partitions the vertices into three disjoint subsets (V0,V1, S). Let E j := {e ∈ E|e ∩ V j , ∅} for
j = 0, 1, that is, E j is the set of edges with at least one endpoint in V j. V j and E j are assigned
to part P j for j = 0, 1. An example of a graph partitioned using this algorithm is shown in
Figure 3.2.

The procedure above intentionally does not specify how to distribute the vertices in S and
the edges therein. We showed in our previous paper [5] that if S is a separator such that each
vertex in S has at least one non-separator neighbor in V0 and one in V1, the communication in
SpMV is limited to the vertices in S , and the volume is 2|S |. Furthermore, the assignment of
vertices in S and edges therein does not matter as long as compatibility is maintained. There
are several ways to exploit this flexibility, yielding several variations on our basic algorithm.

82 Improved Nested Dissection Approach to Sparse Matrix Partitioning

(a) Generic graph (b) Corresponding permuted matrix

F. 3.3. Graph and matrix partitioned using nested dissection method. Striped areas are separators and
nonzeros corresponding to separators, respectively, where we have some flexibility in assignment. Gray blocks of
nonzeros correspond to separator-separator edges in the the graph for which we also have flexibility in assignment.
Matrix is reordered with nested dissection ordering for visualization purposes.

3.1.2. Nested Dissection Partitioning Algorithm. In practice, one wishes to partition
into k > 2 parts. If we knew how to compute a balanced k-separator, a set S such that the
removal of S breaks G into k separate subgraphs, we could assign each subgraph to a different
part and assign the vertices and edges in S based on one of the methods described above.
However, we do not know efficient methods to compute a k-separator and do not consider
this option any further. A more practical approach is to use recursive bisection. In fact, the
procedure to compute a k−separator via recursive bisection is known as “nested dissection”
and well studied [12, 18] since it is important for sparse matrix factorization.

The nested dissection algorithm is illustrated in Figure 3.3. In this example there are
four parts (one for each process). We show the recursive procedure on a mesh, a generic
graph, and the corresponding matrix. The striped and gray areas correspond to separators and
separator-separator edges, respectively. We have not specified how to partition this data. It is
important to note that it is not necessary to use nested dissection order to permute the matrix,
as shown in Figure 3.3(b). We only do this to make the partitioning method more clear.
Figure 3.4(a) shows the actual partitioning of the cage5 matrix [10] with the corresponding
nested dissection ordered partitioning in Figure 3.4(b) for easier visualization of our method.

In nested dissection algorithms, there is often a choice how to handle the separator at each
level. Say V has been partitioned into V0, V1, and S , where S is the separator. The question
is whether S should be included in the subproblems or not. In the original nested dissection
by George [12] and also the generalized nested dissection method [18], it was included in
the recursion, but in many implementations it is not. We have chosen not to include the
separator vertices in the subproblems in the recursion since it simplified our implementation.
For non-overlapping separators, the steps of our vertex separator graph partitioning algorithm
are given in Algorithm 1.
The calculation of the vertex separators (line 1) gives us k disjoint subdomains divided by a
hierarchy of k − 1 separators. The algorithm does not depend on any particular method for
calculating the vertex separators, but smaller separators tend to yield lower communication
volumes. Computing a minimal (balanced) vertex separator is NP-hard but existing heuristics
can provide good (but suboptimal) separators in polynomial time. The most effective separa-
tor heuristics for large, irregular graphs are multilevel algorithms such as those implemented
in METIS [17] and Scotch [9]. Lines 2 and 3 are fully expounded in Algorithm 1. However,

M.M. Wolf and E.G. Boman 83

(a) Actual partitioning. (b) Permuted partitioning.

F. 3.4. cage5 matrix partitioned using nested dissection. (a) shows how the matrix actually looks after being
partitioned. (b) is a symmetric permutation of (a) for visualization purposes with separator blocks boxed.

Algorithm 1: Nested Dissection Graph Partitioning

Compute vertex separators1

Assign part Pi to vertices in Vi (Vi is set of vertices in the subdomain i)2

Assign Pi to edges in Ei (Ei is set of edges that contain a vertex in Vi)3

Assign parts to separator vertices4

Assign parts to edges connecting vertices of the same separator5

Assign parts to edges connecting vertices of two different separators6

there are many different ways to assign parts in lines 4-6 and we leave this decision to the
particular implementation.

3.1.3. Initial Implementation. In our initial implementation, we assigned each vertex
in a given separator (line 4 in Algorithm 1) to a part in the range of parts belonging to one half
of the subdomain. The half is chosen to keep the vertex partitioning as balanced as possible.
We assigned each separator vertex (line 4) to the part of the first traversed neighbor vertex
in the correct range of parts that had already been assigned a part. This greedy heuristic can
be improved but had the advantage of being simple to implement and yielding better results
than some more complicated heuristics. Edges connection vertices of the same separator (line
5) are assigned to the part of the lowered numbered vertex. We assigned edges connecting
vertices from two different separators (line 6) to the part of the vertex of the lower-level
separator. As with line 4, choices can most likely be made for lines 5-6 to further reduce
communication volumes. Results for this initial implementation are given in Section 5 for
this implementation. In Section 4, we attempt to improve upon the simplistic choices made
for lines 4-6.

3.2. Nonsymmetric Case. Some modifications are required for the nonsymmetric case.
We show how we can apply our nested dissection partitioning algorithm to bipartite graphs
to partition nonsymmetric matrices. We generalize our symmetric communication (graph)
model to the nonsymmetric case. This generalization is equivalent to a model recently pro-
posed by Trifunovic [19]. We start with the bipartite graph G = (R,C, E) of the matrix, where
R and C correspond to rows and columns, respectively. In 1d distribution, we partition either
the rows (R) or the columns (C). For fine-grain distribution, we partition both (R,C) and E

84 Improved Nested Dissection Approach to Sparse Matrix Partitioning

1
1

2

2

3

3

4

4 5

5

6 7

F. 3.5. Rectangular matrix.

into k sets. Note that we explicitly partition the edges E, which distinguishes our approach
from previous work. To balance computation and memory, our primary objective is to bal-
ance the edges (matrix nonzeros). Vertex balance is a secondary objective. Again, we assign
communication cost to vertices such that a vertex incurs communication if and only if it has
at least one incident edge in a different part. The communication volume will depend on the
number of different parts to which these edges belong. Similar to the symmetric case, we
have:

T 3.2. Let G(R,C, E) be the bipartite graph of a sparse matrix. Let E(v) de-
note the set of edges incident to vertex v. Let π(v) and π(e) denote the parts to which v and
e belong, respectively. Then the communication volume in matrix-vector multiplication is∑

v∈R∪C (|π(v) ∪ π(E(v))| − 1).

In the bisection case, the volume is simply equal to the number of vertices that have at least
one incident edge in a different part (boundary vertices). A crucial point is that by assigning
edges to processors independent of the vertices, we can reduce the number of boundary ver-
tices compared to the traditional 1d distribution, where only vertices are partitioned and the
edge assignments are induced from the vertices.

Once we have built the bipartite graph for our nonsymmetric matrix, we can apply our
nested dissection algorithm directly to this bipartite graph to partition the matrix. This pro-
cedure is outlined in Figures 3.5 and 3.6. Figure 3.5 shows a nonsymmetric matrix. The
corresponding bipartite graph is shown in Figure 3.6(a). This bipartite graph is partitioned
using our nested dissection partitioning algorithm. The uncolored vertices are a vertex sep-
arator for this bipartite graph. They and the one separator-separator edge are left for the
particular implementation to partition. Figure 3.6(b) shows the partitioned nonsymmetric
matrix corresponding to the partitioned bipartite graph of Figure 3.6(a).

4. Improvements to Nested Dissection Partitioning Algorithm. In Section 3, we out-
lined a general nested dissection partitioning algorithm for sparse matrices (Algorithm 1).
Steps 1-3 in this algorithm specified how to partition all the nonzeros in a matrix with the
exception of the diagonal nonzeros corresponding to separator vertices in the graph and the
off-diagonal nonzeros corresponding to edges connecting separator vertices in the graph (lines
4-6 in the algorithm). In Subsubsection 3.1.3, we outline the choices we made for lines 4-6
in our initial implementation. We showed in our previous work [5] that this initial implemen-
tation produced fairly good results, similar quality to the fine-grain method but requiring less
runtime. The question we attempt to address in this section is whether we can improve our
partitioning method, in particular improving lines 4-6 of the algorithm.

M.M. Wolf and E.G. Boman 85

R2

C1

C4R4

R5

C5

C6
C7

R1

R3

C2 C3

(a) Bipartite graph.

1

2

3
4
5

12 3 45 6 7

(b) Partitioned matrix.

F. 3.6. Bisection of bipartite graph and resulting partitioned/reordered nonsymmetric matrix. (b) is reordered
for visualization purposes.

S0

S2S1

(a) Separator connections to interior vertices. (b) Fixed vertices.

F. 4.1. Partitioning model for separator vertices (gray) and edges connecting separator vertices (black).
(a) shows the separator vertices (for 3 separators) connected to interior vertices of the different domains. In (b)
these interior vertices are replaced by fixed vertices, represented by squares (one for each different part), that are
preassigned to a part before the partitioning process.

4.1. Partitioning Separator Vertices and Edges. In this subsection, we develop a
model for improving the partitioning of the separator vertices and edges connecting separator
vertices (lines 4-6 in Algorithm 1). We focus only on partitioning these separator vertices and
edges, given the previous partitioning of the rest of the graph (lines 1-3 in Algorithm 1). This
partitioning problem is shown in Figure 4.1 for k = 4 (3 separators). Figure 4.1(a) shows the
separator vertices (unpartitioned, thus gray), which are connected to previously partitioned
vertices in the subdomains (colored vertices) with previously partitioned edges. The edges
(unpartitioned) connecting separator vertices are shown in black. We ignore the separator dis-
tinctions and partition the separator vertices and edges independent of the particular separator
that each separator vertex belongs (Figure 4.1(b)). We replace the interior subdomain vertices
with special fixed vertices (represented by the squares in Figure 4.1(b)), one for each part of
the partition. The idea behind the fixed vertices is that it does not matter how many of the
interior vertices of a given part a separator vertex is connected to in terms of communication,
only that there is at least one such connection. The fixed vertices serve as a mechanism to
account for the resulting communication when a separator vertex is assigned a part different
from the part of a neighboring interior vertex.

4.2. Implementation for Partitioning Separator Vertices and Edges. We implement
the partitioning of the nonzeros corresponding to the separator vertices and edges by using a
symmetric version of the fine-grain hypergraph method (outlined in Subsection 2.5). The key

86 Improved Nested Dissection Approach to Sparse Matrix Partitioning

factor in our decision to use the relatively slow fine-grain hypergraph method is that we are
only partitioning a small fraction of the original matrix (that corresponding to the separator
vertices and edges). We use the aforementioned fixed vertices in this fine-grain hypergraph
vertices and a partitioning method that allows us to preassign parts to these fixed vertices.
The hope was that this partitioning of the separator vertices and edges would be superior to
the heuristics (described in Subsubsection 3.1.3) that we used in our initial implementation.

5. Results. We compare the partitionings of different methods for a set of 11 sparse
matrices. These matrices derived from different application areas (structural analysis, infor-
mation retrieval, linear programming, circuit simulation, etc.), 9 (of 11) that were used and
described in [20]. We perform separate experiments for symmetric and nonsymmetric ma-
trices. We summarize the matrix properties in Tables 5.1 and 5.2. The first six matrices are
symmetric (Table 5.1), and the final five are rectangular and thus nonsymmetric (Table 5.2).
It is important to note that we treat explicit zeros in the sparse matrix storage as nonzeros so
our number of nonzeros may differ slightly (but not significantly) from [10].

T 5.1
Symmetric Matrix Info

Name N nnz nnz/N application
cage10 11,397 150,645 13.2 DNA electrophoresis

finan512 74,752 596,992 8.0 portfolio optimization
bcsstk32 44,609 2,014,701 45.2 structural engineering
bcsstk30 28,924 2,043,492 70.7 structural engineering
asic680ks 682,712 2,329,176 3.4 circuit simulation
pkustk04 55,590 4,218,660 75.9 structural engineering

T 5.2
Nonsymmetric Rectangular Matrix Info

Name rows cols nnz application
dfl001 6,071 12,230 35,632 linear programming
cre b 9,648 77,137 260,785 linear programming

tbdmatlab 19,859 5,979 430,171 information retrieval
nug30 52,260 379,350 1,567,800 linear programming

tbdlinux 112,757 20,167 2,157,675 information retrieval

In subsections 5.1 - 5.2, we compare the communication volume of the resulting parallel
sparse matrix-vector multiplication for these matrix partitionings. We compare the imple-
mentations of our nested dissection algorithm (both the original and the improved imple-
mentations) with 1d hypergraph partitioning and fine-grain hypergraph partitioning. Though
NP-hard problems, several good codes for graph and hypergraph partitioning are available,
all based on the multilevel method. We used PaToH 3.0 [6] and Zoltan 3.0 [11] as our hy-
pergraph partitioners. Metis and ParMetis are often used to find nested dissection orderings,
but were not suitable for us because (i) Metis does not return the separators, and (ii) ParMetis
runs only in parallel and quality deteriorates with increasing numbers of processes. Instead
we derive our vertex separators from edge separators produced by hypergraph partitioning.
This choice also enables a fair comparison across methods since the code base is the same.

5.1. Symmetric Matrices. We partition the 6 symmetric matrices shown in Table 5.1
using 1d, fine-grain, and the nested dissection methods of partitioning for 4, 16, 64, and 256

M.M. Wolf and E.G. Boman 87

parts. We use the nested dissection implementations outlined in Sections 3 and 4 to partition
the matrices directly. The average communication volumes are shown in Table 5.3. For 1d
partitioning, we list the total communication volume. For the fine-grain and nested dissection
methods, we list a scaled volume relative to the 1d volumes such that scaled volumes less than
1 indicate an improvement over the 1d method. We see that both our nested dissection imple-
mentations perform consistently better than 1d (scaled volumes less than 1). When compared
to the fine-graph method, we see for most partitionings that the original nested dissection im-
plementation yielded similar or better results for three of the six matrices. The original nested
dissection only performed much worse for the cage10 matrix. Another important point is that
we previously showed the nested dissection method runtimes to be significantly lower than
that of fine-grain [5], so in general we consider this a success. The improved nested dissection
implementation consistently yielded better results than the original one. When compared to
the fine-graph method, it yielded similar or better results for four of the six matrices and was
always competitive.

T 5.3
Average (20 runs) communication volume (in words) for k-way partitioning of symmetric matrices using dif-

ferent partitioning methods.

1d fine-grain orig. ND impr. ND
Name k total vol. scaled vol. scaled vol. scaled vol.
cage10 4 5379.0 0.755 0.822 0.757

16 12874.5 0.689 0.887 0.716
64 23463.3 0.696 0.980 0.723

256 40830.9 0.716 1.030 0.742
finan512 4 295.7 0.883 0.775 0.734

16 1216.7 0.844 0.770 0.745
64 9986.0 0.864 0.807 0.768

256 38985.4 0.679 0.770 0.674
bcsstk32 4 2111.9 0.763 0.840 0.833

16 7893.1 0.802 0.861 0.836
64 19905.4 0.938 0.910 0.852

256 46399.0 1.002 0.944 0.857
bcsstk30 4 1794.4 1.079 0.781 0.761

16 8624.7 1.133 0.827 0.752
64 23308.0 1.102 0.902 0.774

256 56100.4 1.031 0.982 0.824
asic680ks 4 3560.4 0.509 0.612 0.616

16 9998.5 0.463 0.605 0.591
64 21785.8 0.439 0.588 0.581

256 38869.4 0.492 0.613 0.615
pkustk04 4 6610.8 0.626 0.526 0.496

16 27565.4 0.492 0.602 0.553
64 75329.7 0.416 0.623 0.513

256 162105.5 0.428 0.558 0.451

5.2. Nonsymmetric Matrices. We partitioned the 5 nonsymmetric matrices shown in
Table 5.2 using 1d column, 1d row, fine-grain, and the nested dissection methods of parti-
tioning for 4, 16, 64, and 256 parts. However, in order to use the nested dissection partition
methods with the nonsymmetric matrices, we have to form bipartite graphs as described in

88 Improved Nested Dissection Approach to Sparse Matrix Partitioning

Subsection 3.2. We can then apply the nested dissection implementations to partition the bi-
partite graph, which gives us a partitioning of the nonsymmetric matrix. In this subsection, we
report the communication volumes of the matrix-vector multiplication resulting from these
partitionings.

Table 5.4 shows communication volumes averaged over 20 runs for the 5 rectangular ma-
trices from Table 5.2. The original nested dissection method results were consistently worse
than the fine-grain results for these rectangular results and often worse than one of the 1d
methods. Only for the tbdlinux matrix did the original nested dissection method yield sig-
nificantly lower communication volumes than both 1d methods. However, we saw significant
decrease in the communication volume for the new, improved nested dissection partitioning
implementation when compared to the original implementation for both the tbdmatlab and
the tbdlinux matrices. In fact, for these term-by-document matrices, the improved nested dis-
section method had a much lower communication volume when compared to the 1d methods
and was slightly better than the fine-grain hypergraph method.

T 5.4
Average (20 runs) communication volume (in words) for k-way partitioning of rectangular nonsymmetric ma-

trices using different partitioning methods. ** - for one run, PaToH hypergraph partitioner failed to produce a
partition in 100 times the expected runtime, averaging 19 runs.

1d col. 1d row fine-grain orig. ND impr. ND
Name k total vol. scal. vol. scal. vol. scal. vol. scal. vol.
dfl001 4 1388.4 2.141 0.996 1.181 1.150

16 3575.5 1.631 0.997 1.155 1.097
64 6040.2 1.391 0.995 1.119 1.077

256 8897.0 1.377 0.990 1.097 1.069
cre b 4 1119.6 29.194 1.027 2.312 2.283

16 3509.3 15.970 1.011 1.848 1.803
64 7952.3 9.315 1.024 1.605 1.608

256 17077.8 6.048 0.997 1.409 1.405
tbdmatlab 4 14991.2 0.937 0.718 0.681 0.560

16 40562.8 1.343 0.778 0.888 0.716
64 81468.6 1.661 0.797 1.041 0.774

256 144098.2 1.673 0.757 1.093 0.780
nug30 4 56796.5 4.746 1.100 1.307 1.295

16 115539.4 3.320 1.157 1.507 1.499
64 199977.0 2.674 1.172 1.530** 1.496**

256 307627.1 2.090 1.166 1.494 1.455
tbdlinux 4 52021.1 0.813 0.471 0.429 0.321

16 146980.9 1.136 0.565 0.594 0.491
64 307829.8 1.449 0.610 0.733 0.567

256 569152.5 1.600 0.611 0.854 0.590

6. Discussion/Conclusions. We presented improvements to our nested dissection method
for partitioning sparse matrices. Our previous implementation produced partitions of similar
quality to the fine-grain method for symmetric matrices at a great reduction in the runtime.
Our improved implementation has further reduced the communication volume so that we
argue that it is the best of the four methods for our set of symmetric matrices. For the rect-
angular nonsymmetric matrices, our original nested dissection algorithm seems to perform
rather poorly compared to both 1d and fine-grain. We speculate that this may be a weak-

M.M. Wolf and E.G. Boman 89

ness in our method of calculating the vertex separators and may be improved by a different
method such as ParMetis [16] or PT-Scotch [9]. Again, our new implementation of the nested
dissection partitioning algorithm yielded improved results for these nonsymmetric matrices
but not significantly for all the matrices. However, it is interesting to note that our new im-
plementation was the best of the five methods for the two term-by-document matrices. We
plan to further study the partitioning of these these types of matrices since they are extremely
important in information retrieval. We believe our algorithm can be efficiently implemented
in parallel since the core is nested dissection (by vertex separators), so existing software like
ParMetis [16] or PT-Scotch [9] may be used. We plan to study parallel performance on larger
problems in future work.

Acknowledgments. We wish to thank Rob Bisseling, Umit Catalyurek, Michael Heath,
and Bruce Hendrickson for helpful discussions. We thank Florin Dobrian for providing a
matching code used to produce vertex separators. This work was funded by the US Dept. of
Energy’s Office of Science through the CSCAPES Institute and the SciDAC program.

REFERENCES

[1] C. B, Graphs and Hypergraphs, vol. 6 of North-Holland Mathematical Library, Elsevier Science Pub-
lishing Company, 1973.

[2] , Hypergraphs: Combinatorics of Finite Sets, vol. 45 of North-Holland Mathematical Library, Elsevier
Science Publishing Company, 1989.

[3] R. H. B, Parallel Scientific Computing: A structured approach using BSP and MPI, Oxford University
Press, 2004.

[4] R. H. B W. M, Communication balancing in parallel sparse matrix-vector multiplication,
Electronic Transactions on Numerical Analysis, 21 (2005), pp. 47–65.

[5] E. B M. W, A nested dissection approach to sparse matrix partitioning for parallel computations.
Submitted, 2008.

[6] Ü. Ç̈ C. A, Hypergraph-partitioning-based decomposition for parallel sparse-matrix
vector multiplication, IEEE Trans. Parallel Dist. Systems, 10 (1999), pp. 673–693.

[7] , A fine-grain hypergraph model for 2d decomposition of sparse matrices, in Proc. IPDPS 8th Int’l
Workshop on Solving Irregularly Structured Problems in Parallel (Irregular 2001), April 2001.

[8] , A hypergraph-partitioning approach for coarse-grain decomposition, in Proc. Supercomputing 2001,
ACM, 2001.

[9] C. C F. P, PT-SCOTCH: A tool for efficient parallel graph ordering, Parallel Computing,
34 (2007), pp. 318–331.

[10] T. A. D. The University of Florida Sparse Matrix Collection, 1994. Matrices found at
http://www.cise.ufl.edu/research/sparse/matrices/.

[11] K. D, E. B, R. H, B. H, C. V, Zoltan data management services for
parallel dynamic applications, Computing in Science and Engineering, 4 (2002), pp. 90–97.

[12] A. G, Nested dissection of a regular finite-element mesh, SIAM Journal on Numerical Analysis, 10
(1973), pp. 345–363.

[13] A. G, M. T. H, J. W.-H. L, E. G.-Y. N, Solution of sparse positive definite systems on a
hypercube, Journal of Computational and Applied Mathematics, 27 (1989), pp. 129–156. Also available
as Technical Report ORNL/TM-10865, Oak Ridge National Laboratory, Oak Ridge, TN, 1988.

[14] A. G, J. W.-H. L, E. G.-Y. N, Communication results for parallel sparse Cholesky factorization
on a hypercube, Parallel Computing, 10 (May 1989), pp. 287–298.

[15] B. H T. G. K, Partitioning rectangular and structurally nonsymmetric sparse matrices for
parallel computation, SIAM J. Scientific Computing, 21 (2000), pp. 2048–2072.

[16] G. K V. K, Parmetis: Parallel graph partitioning and sparse matrix ordering library, Tech.
Rep. 97-060, Dept. Computer Science, University of Minnesota, 1997.

[17] , METIS 4.0: Unstructured graph partitioning and sparse matrix ordering system, tech. rep., Dept.
Computer Science, University of Minnesota, 1998.

[18] R. J. L, D. J. R, R. E. T, Generalized nested dissection, SIAM Journal on Numerical Ananl-
ysis, 16 (1979), pp. 346–358.

[19] A. T W. J. K, A general graph model for representing exact communication volume
in parallel sparse matrix-vector multiplication, in Proc. of 21st International Symposium on Computer
and Information Sciences (ISCIS 2006), 2006, pp. 813–824.

[20] B. V R. H. B, A two-dimensional data distribution method for parallel sparse matrix-
vector multiplication, SIAM Review, 47 (2005), pp. 67–95.

CSRI Summer Proceedings 2008 90

HETEROGENEOUS ENSEMBLE CLASSIFICATION

SEAN A. GILPIN∗ AND DANIEL M. DUNLAVY†

Abstract. The problem of multi-class classification is explored using heterogeneous ensemble classifiers. Het-
erogeneous ensembles classifiers are defined as ensembles, or sets, of classifier models created using more than one
type of classification algorithm. For example, the outputs of decision tree classifiers could be combined with the
outputs of support vector machines (SVM) to create a heterogeneous ensemble. We explore how, when, and why
heterogeneous ensembles should be used over other classification methods. Specifically we look into the use of bag-
ging and different fusion methods for heterogeneous and homogeneous ensembles. We also introduce the H
framework, a software tool for creating and testing heterogeneous ensembles.

1. Introduction. The problem of data classification, or data labeling, arises in a wide
variety of applications. Examples include detecting spam e-mail messages based on the con-
tent of the messages (document classification), labeling cells and tumors as malignant or
benign based on the context of MRI scan data (image classification), and identification of in-
dividuals based on fingerprints, facial features, and iris patterns (biometric identification). In
all of these examples, the goal is to predict a discrete label (e.g., “spam” versus “not spam”)
for a particular data instance (e.g., a particular e-mail message) based on the attributes of that
instance.

More formally, classification is the task of learning a function, f , that maps a set of
data instance attributes, x = 〈a1(x), . . . , am(x)〉, to one of several predefined class labels,
Y = {y1, . . . , yk}. When a data instance can be deduced easily from the context, attribute j
of that instances will be denoted simply as a j. The function f is often called a classifier,
classifier model, or hypothesis. The set of data instances used to learn, or train, a classifier
model is called the training set and is denoted Dtr = {(x1, y1), . . . , (xn, yn)}, where n is the
number of instances, x ∈ Rm is a vector of attributes, or features, for data instance i, and yi

is the label for data instance i. In order to validate the models learned, it is common practice
to select some of the training data to be used in testing the resulting classifier models. This
testing, or validation data, is denoted Dte and is not used in training the classifier model.
Throughout this paper, we assume that all labels given for the training and testing data are
correct—i.e., there are no mislabeled instances.

Recent results in solving classification problems indicate that the use of ensembles, or
sets of classifier models, often leads to improved performance over using single classifier
models [3, 4, 5, 24]. Much of the previous work on ensembles of classifier models (see e.g.,
[7]) has focused on homogeneous ensemble classifiers—i.e., collections of classifier models
of a single type. In this work, we focus on heterogeneous ensemble classifiers, where the
collection of classifiers are not of the same type. Note that such classifier models are also
referred to as hybrid ensemble classifiers. Our goal is to find when and how the use of
heterogeneous ensembles can be advantageous.

The motivation for our current work stems from previous work in classifying text docu-
ments [4]. The problems in that domain sometimes involve two classes (e.g., “spam” versus
“not spam” in the e-mail classification problem), but more generally involve more than two
classes (e.g., mapping scientific articles to appropriate journals for publication). Thus, we
focus on the general problem of multi-class classification in this paper (i.e., k >= 2). We
are also interested in incorporating data with missing attributes or with both continuous and
discrete attributes into our models, as such data often arises in text document classification
problems (e.g., documents do not contain all terms [i.e., features] and documents can contain

∗Computer Science, San Jose State University, sgilpin80@gmail.com
†Computer Science and Informatics, Sandia National Laboratories, dmdunla@sandia.gov

S.A. Gilpin and D.M. Dunlavy 91

both continuous features [via vector space models] and discrete features [dates, publication
names, etc.]).

As part of this work, we have created a software framework called H (Hetero-
geneous Ensemble Machine Learning Open Classification Kit) for creating and evaluating
heterogeneous ensemble classifiers. Although the methods described in this paper for clas-
sifier models, ensemble creation, and classifier validation/performance are applicable to the
problem of classification in general, the majority of the focus is on those methods currently
available in H.

2. Methods. In this section, we describe the methods used in the H software
package to generate classifier models. Currently, H interfaces a software library called
W [25] for all of its classification methods. These methods formulate models that include
mathematical descriptions of decision boundaries—i.e., hyperplanes, piecewise hyperplanes,
or nonlinear manifolds that partition the feature vector space induced from a given training
set of data. Combined with decision rules particular to each method, these decision bound-
aries are used to determine which class labels are associated with different areas of the feature
space. Note that some methods generate explicit representations of the decision boundaries
via parameters of some explicit function (e.g., support vector machines), whereas others gen-
erate implicit boundaries (e.g., nearest neighbor classifiers). Appendix A has information
about the methods used from W. The rest of this section focuses on the ensemble meth-
ods implemented in H. Throughout this section, “data” refers to “training data” unless
otherwise indicated.

2.1. Ensemble Classifiers. Ensemble classifiers are a type of meta-model that use a set
of base classifiers as input to a combination function. The combination function is intended to
make the best use of the information provided from the base classifiers in order to make class
label predictions as accurately as possible. These ensembles are homogeneous, referring to
the fact that all of the base classifiers are of a single type (e.g., decision trees), differing by
model parameters, the data used for training, or a combination of the two.

Ensemble classifiers have been found to be generally more accurate than non-ensemble
classifiers. Following are different situations in which using an ensemble classifier model
over a single classifier model have led to improved classifier performance in practice [11].

• Base classifiers may not be able to model the true class decision boundaries exactly.
For example, a linear model can never exactly represent a quadratic decision bound-
ary. However an ensemble with linear models as base classifiers will in general
lead to more flexible decision boundaries than those of the simple, underlying linear
models.

• A lack of data can lead to many good estimations of the true class boundaries. In-
stead of choosing one, an ensemble can use all of them as base classifiers to eliminate
the chance of picking the worst classifier.

• Globally optimal searches of the classifier function space are not computationally
feasible for large sets of data or data instances with large numbers of features. Most
classification algorithms are therefore limited to searches that lead to locally opti-
mal parametrization. In this case, a combination of models may better approximate
globally optimal estimation of true decision boundaries by employing base classi-
fiers that search different regions of the global classifier parameter space.

• Noise in the training data can be addressed by combining models that are trained
using data sampled from the entire training data set. Combinations of models trained
is such a way often reduce overfitting the data as well.

There are two general types of ensemble combination functions: fusion and selection.
In fusion functions, the output from each of the base classifiers includes a weight on every

92 Heterogeneous Ensemble Classification

prediction made by the ensemble. A typical fusion function is the sum of the weighted predic-
tions. Selection functions, on the other hand, allow the use of outputs from one or more of the
base classifiers, not necessarily making use of the outputs of all of the predictions. Moreover,
the base classifier output used in the selection function typically depends on the characteris-
tics of the instance whose class is being predicted. For example, a selection function could be
one that chooses the base classifier that performs best on the training data instances that are
most like the testing data instance being considered for classification. We currently consider
fusion methods only throughout the remainder of this paper.

The combinations functions we consider take as input one of three different types of
output from the base classifiers.

• Labels. Functions that make use of the most likely class to which an instance be-
longs.

• Label rankings. Functions that make use of ranked lists of class label predictions
(e.g., sorted by likelihood or probability that the instance belongs to the class).

• Measurements. Functions that make use of vectors of length k (i.e., the number of
classes), where element j corresponds to a measurement of an instance associated
with class j. These measurements are often intrinsic values computed within each
classification method. In this work, the measurements are the probabilities that an
instance belongs to a particular class.

A variety of fusion methods have been developed. We discuss several here that are used
in the experiments described in Section 4. An example of a fusion function that uses label
outputs is the majority voting function [19]. In majority voting, the labels output from each
base classifier are used as votes on the predicted class, and the class with the most votes be-
comes the predicted class of the ensemble classifier. The sum rule is an example of a fusion
function that uses measurement outputs from the base classifiers [18]. The sum rule first sums
the measurement output vectors from the base classifiers for a given test instance, and then
chooses the class corresponding to the largest sum as the predicted class. The linear com-
bination rule is identical to the sum rule except that each of the base classifiers is assigned
a weight, which is used to scale the measurement vectors before summing [26]. In our ex-
periments, we determined the weights using the least squares method to maximize training
accuracy. In stacking, the output vectors are treated as input to a new classification problem,
where a classification algorithm, such as the SVM classification algorithm, builds a model to
act as the fusion function. We have also been alerted, by a referee, to an ensemble method
that is implemented inside of W, called Ensemble Selection[8]. In the future we would
like to explore this method and compare our results with it.

The process of creating ensemble classifier models involves two major steps. First, the
base classifiers are created during a generation phase, and then the models are combined dur-
ing a combination phase. The goal of the generation phase is to create a diverse, accurate set
of base classifiers. A recent survey on several diversity measures [5] illustrates the challenges
associated with creating a diverse set of base classifiers, and accuracy will be discussed in
Section 3.1. Examples of methods for generating diverse base classifiers include sampling
the training data (e.g., bagging [6]) and sampling the feature space (e.g., the random sub-
space method [15]). Another example method, the method of random forests [7], combines
these two sampling strategies.

For some homogeneous ensemble models (e.g., models using a linear combination fusion
function), several model parameters need to be learned or fit. Typically, the training of the
ensemble model parameters is performed using the training data set. However, there are
issues with such an approach [13], and more work in this area is required to better understand
the implications of such a training strategy. Such work is beyond the scope of this paper, but

S.A. Gilpin and D.M. Dunlavy 93

will be pursued in future work.

2.2. Heterogeneous Ensemble Classifiers. A heterogeneous ensemble is an ensemble
with a set of base classifiers that consist of models created using different algorithms. The
same combination functions that are used to create homogeneous ensembles can be used to
create heterogeneous ensembles. The main difference lies in the methods used for creating the
set of base classifier. The methods available for creating base classifier sets for homogeneous
ensembles are modified so that models built from different classification algorithms can be
combined to form a set of base classifiers. Currently, there is no clear choice on how to com-
bine these base classifiers most effectively. Furthermore, there are open questions regarding
which base classifiers to use and how they should be combined for optimal performance.

Motivation. Using different types of base classifiers leads to diversity in the same way
that changing model parameters can in creating homogeneous ensemble classifiers. Different
base classifier types can have different internal representations and may be biased in different
ways. This leads to classifiers that will disagree with each other to some extent over a set
of data instances covering a wide range of the feature space. This disagreement between the
base classifiers is essential for the success of an ensemble classifier and is what we refer to
as diversity. Without diversity in the base classifier models, there is no point in using an
ensemble, as the output of the ensemble classifier will be identical to the output of each of the
base classifiers. On the other hand, we would also like the base classifiers to be as accurate as
possible. We do not want to force diversity in such a way that we end up with base classifiers
that have too much error or that do not generalize well. Using a heterogeneous set of base
classifiers, then, is a way to introduce diversity while keeping accuracy high.

Diversity. Table 2.1 illustrates how different base classifier algorithms can lead to diver-
sity in an ensemble. These classifiers were trained using the same data set. They were then
tested using a testing data set and their outputs were recorded. The differences in their outputs
represent the extent to which they “disagree” about the probability distributions for the test
instances.

Naive Bayes Decision Tree
Instance Measurement Label Measurement Label

1 [0.99, 0.01] 1 [0.87, 0.13] 1
2 [0.00, 1.00] 2 [0.18, 0.82] 2
3 [0.04, 0.96] 2 [0.18, 0.82] 2
4 [0.01, 0.99] 2 [0.87, 0.13] 1
5 [0.00, 1.00] 2 [0.18, 0.82] 2
6 [0.00, 1.00] 2 [0.05, 0.95] 2
7 [0.99, 0.01] 1 [0.87, 0.13] 1
8 [1.00, 0.00] 1 [0.05, 0.95] 2

T 2.1
Measurement outputs from two classifiers trained on the same data. The differences in these outputs for the

same instances is what we refer to as diversity and is essential for creating ensemble classifiers. In this example the
diversity is introduced by using different classification algorithms.

2.2.1. HEMLOCK. H has been designed to create and test heterogeneous en-
semble models. As such it contains methods for creating base classifiers, applying fusion
functions, and evaluating classifier models. H currently uses interfaces to W clas-
sification algorithms for creating base classifiers. Input and output is passed to and from
H via XML. The input, or experiment, files contain information about which models

94 Heterogeneous Ensemble Classification

to use, model parameters, evaluation methods, and data sets to be used in an experiment.
Ranges of model parameters can be specified as well, leading to collections of experiments,
each corresponding to a particular set of parameters allowed. Currently only full factorial
experiments for a given set of parameter values (i.e., sets of experiments where all possi-
ble combinations of the given parameters values are tested) are supported. Several standard
evaluation methods have been implemented in H as well: e.g., stratified k-fold cross
validation, ROC curve generation, and generalization error calculations. Creation of base
classifiers using a particular set of parameters or via random sampling can be specified as
well. H currently includes the fusion methods of majority voting, the sum rule, and a
linear combination rule (where the weights are computed using linear l2 regression).

3. Evaluation of classification algorithms. The evaluation of performance or accu-
racy of a classification algorithm is not necessarily straightforward. Real world problems
often have different sets of (potentially conflicting or competing) requirements. Hence, an al-
gorithm (or more precisely, a particular parametrized instance of an algorithm) that may work
well in solving one classification problem may perform poorly on other problems. Some is-
sues that motivate different approaches to classifier evaluation include model interpretability,
predictive ability of models created (including accuracy and data overfitting), and computa-
tional time/effort required during both the training and application of a model.

3.1. Evaluation Considerations.
Interpretability. Sometimes the models from classification algorithms need to be inter-

pretable by a human being, e.g., for explanatory analysis of classes in addition to prediction.
It may be that the user wants to ensure the sanity of the model, or it may be that he or she
wants to learn something about the underlying classes by studying the models. Some classifi-
cation algorithms create models that are easy and natural for humans to interpret. Ensembles
models, however, are generally not easy to interpret, even when the base classifiers individu-
ally are easy to interpret.

Accuracy. Generalization error is a measure of how well a model predicts the classes for
a set of instances it has never seen before (i.e., a testing data set). Training error is a measure
of how well a model predicts classes for the same set of instances that were used to train the
model. Training error is a very optimistic estimation of the true model error over the entire
instance space, whereas generalization error is more pessimistic and a less biased estimate of
the true error. Accuracy then usually refers to the complement of the generalization error.

Overfitting. One of the reasons that training error is regarded as optimistic is based on
data overfitting. Training error does not incorporate the extent a classification model has
overfit the data. If a model is too specific to the training data and does not generalize well to
the entire instance space, then it has overfit the training data. There are various strategies that
classification algorithms can employ to ensure that resulting models both perform well on the
training data and generalize to unseen training instances. For example, many decision tree
classification algorithms contain methods for pruning of tress to avoid singleton leaf nodes,
which typically do not generalize well.

Computational Time. There are two considerations associated with the computational
running time of a classification algorithm. One is the amount of time it takes to build the
models, called training time. The other is the time it takes to predict the class of an instance,
called prediction time. Some algorithms require very little time to train but more time to
predict, and some vice versa. For example, artificial neural networks [22] (not currently part
of H) can take a very long time to train, but the models they produce are a simple
linear combination of the features, leading to constant prediction time complexity. On the
other hand, a nearest neighbor classifier spends no time on training, but during classification

S.A. Gilpin and D.M. Dunlavy 95

the training data set must be searched to find the nearest neighbors for each testing instance,
which can be computationally expensive. A less extreme example are decision trees, which
for many methods can be trained in O(mn log n) time and tested in O(logs n) time, where
s is the minimum number of splits allowed over all the attributes (e.g., s = 2 in the case
of binary decision trees induced from data with only continuous attributes) [12]. Another
consideration that impacts computational time is how much and to what extent the training
and testing methods of a classification algorithm parallelizes. In general, ensemble methods
can be parallelized well because the ensemble members can be trained in parallel, and the
ensemble predictions can be executed in parallel as well.

3.2. Evaluation Measures. The following descriptions of evaluation measures assume
we are solving a two-class classification problem and that the true class labels are known for
the testing data instances. All of the following concepts can be generalized to multi-class
problems but we do not, in this exposition, for the sake of clarity. When dealing with two-
class problems the class labels are “positive” (typically referring to the class in which we are
most interested in classifying) and “negative”. Table 3.1 lists definitions used throughout this
section.

Value Symbol True Label Predicted Label
True positives TP positive positive
True negatives TN negative negative
False positives FP negative positive
False negatives FN positive negative

T 3.1
Definitions used in measures for evaluating two-class classifier models.

Confusion Matrices. A confusion matrix can be created from a model f and a set of
instances with known true class labels Dte, and reflects how well a classifier correctly clas-
sifies those instances per class. An example confusion matrix for the two-class classification
problem is as follows.

Predicted Class
Positive Negative

True Class
Positive TP FN
Negative FP TN

Rows of the matrix are associated with true labels, and columns represent the predicted labels.
Hence, the sum of the row values equals the number of instances in Dte that have the true
class corresponding to that row. Similarly the sum of the column values equals the number
of instances in Dte where f (x) has predicted the class corresponding to that column. It is
easy to see that elements on the diagonal contain the counts of instances that the model
correctly labeled for each class. With a two class classification problem, you always get a
2× 2 confusion matrix where the values in the matrix correspond to TP, FN, FP, TN from left
to right and top to bottom. TP and TN are on the diagonal entries and correspond to correctly
classified instances.

Accuracy. We denote the accuracy of a classifier model, f , as

A(f) =
Number of correct predictions
Total number of predictions

. (3.1)

As mentioned above, it is important to realize the importance of choosing a set of instances
for calculating accuracy. Accuracy can be calculated using any set of instances, but a data set

96 Heterogeneous Ensemble Classification

containing instances different than those used in training the model begin evaluated will be
less biased.

Receiver Operator Characteristic (ROC) Curve. ROC curves depict the potential of a
model for correct classification in two-class problems. To generate an ROC curve for a
classifier model, the set of continuous outputs relative to the positive class—i.e., the val-
ues f (x), x ∈ Dte are first sorted in descending order. The ROC curve is then a plot of the true
positive rate, T P/(T P+FN), as a function of the false positive rate, FP/(FP+T N), computed
using each of the sorted outputs as a cutoff threshold for labeling instances as positive. The
true positive rate is also called the sensitivity of a classifier model, and the false positive rate
is the complement of the specificity of a classifier model. Thus, an ROC curve is sometimes
referred to as a plot of sensitivity versus (1 - specificity).

ROC analysis can also be used to compare models built for multi-class classification
problems. In the simplest case, each model will correspond to one point on the graph. One
can then easily compare different properties of the models based on their placement on the
graph. [14]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1 − specificity

se
ns

iti
vi

ty

C1
C2
C3
C5
C6

F. 3.1. Example ROC curves for random tree classifiers trained on the “anneal” data set (6 classes, 5 classes
represented in test data). The different curves correspond to ROC curves for the two-class problems of one class
versus the rest.

Area Under the Curve (AUC). The AUC measurement corresponds to the ROC analysis
for two-class classification models. The area under the ROC curve described above can be
calculated to give a scalar representation of the most important aspect of the plot: the potential
of the classifier to perform well in separating regions of feature space by class.

3.3. Validation Methods. Methods for validating the performance of classifier mod-
els typically employ a scheme for choosing training and testing data sets and a process for
determining the significance of the results [19, 23].

Holdout. The simplest method to validate a classifier model is called the holdout method
and simply involves separating a given set of instances with known labels into two sets, Dtr

and Dte. The first set is used to train the model and the second set is used to test the model.
This method is not often used because it is difficult to determine the significance of the tests
results since it is based on a single split of the data only. However, the method is quick and
does indicate a rough estimate of performance.

Stratified k-Fold Cross Validation. The method of k-fold cross validation is used to com-
pute generalization error and determine the significance of the testing results. The methods
starts by first dividing the training data into k partitions, or folds, where each fold contains
instances with approximately equal class distribution (i.e., are stratified). If the folds are
not stratified, the test results may poorly approximate the generalization error. Each of the

S.A. Gilpin and D.M. Dunlavy 97

folds will be used as a testing set for exactly one model trained using the remaining folds as
training data. Once the models are created, they are tested and the results are averaged to
determine generalization error and then analyzed statistically to determine the significance of
the results. A common value used for k is 10, but their may be advantages for using other
values depending on the problem at hand. One disadvantage of using large values of k is that
a large number of models will need to be created and tested; this may not be practical due to
the computational time required.

Other related methods are the leave-one-out method and 5 × 2-fold cross validation. In
the leave-one-out method, each of the instances is used individually as a testing set with the
remaining instances used as the training set. With n instances, this is equivalent to n-fold
cross validation. 5× 2-fold cross validation consists of 2-fold cross validation performed five
times, with the results being averaged across the five runs [10].

Bootstrapping (Random Fold) Validation. Bootstrapping is similar to k-fold cross vali-
dation in that different models are created and tested, with the performance results computed
as averages over all the models. The training sets are created by randomly selecting instances
with replacement. All of the instances that are not chosen for the training set are used as the
test set. Because the instances are drawn with replacement, a larger training set can be created
than with k-fold cross validation. However, many of the instances in the training set may be
duplicates. The test results of this method should be meaningful, as the class distributions
of the test set will likely match the class distribution of the original set of instances and the
training set because of the random way the set is chosen. This method can be useful when
only a small number of instances with known labels are available.

4. Numerical Experiments. In this section we describe the experiments we performed
on base classifiers, homogeneous ensemble classifiers, and heterogeneous ensemble classi-
fiers.

4.1. Data. The data we used in our experiments is the data from [3]. We specifically
only used data that had no unknown attributes. See Table B.1 for a summary of the data sets
used in the experiments.

4.2. Experiments. First we performed parameter sweeps for the base classifier algo-
rithms to find sets of parameters that performed well. We measured the performance by using
2-fold cross validation to calculate accuracy and then taking the average of those accuracies
across all of the data sets. We then used the parameter combinations to construct homoge-
neous ensemble classifiers. Each of these homogeneous classifiers used the top two-thirds
of the parameter combinations of the base classifier algorithm. This meant that the homo-
geneous ensembles had different numbers of base classifiers as there were different numbers
of total parameters combinations for each of the base classifier types. We also created het-
erogeneous ensembles by using all of the base classifier combinations that were used in the
homogeneous ensembles. Each of the ensembles were combined using either voting or the
sum rule.

We then repeated the same strategy for creating creating ensembles, with the additional
use of bagging. Each of the bagged ensembles were constructed using 200 base classifiers
trained on a bag with the same size as the original training set. We evaluated the ensembles
by measuring the accuracy using 2-fold cross validation for each of the data sets and then
averaging over the all of the data sets.

4.3. Results. As was expected, on average, the ensembles performed better than the
base classifiers in terms of accuracy. For the averaged results corresponding to the ensemble
classifiers, the only clear trend was the improvement due to the use of the sum rule over
voting when not using bagging, as can be seen in Figure 4.1. Surprisingly, the results were

98 Heterogeneous Ensemble Classification

Classification Fusion
Type Algorithm Function
Decision Tree Random Tree (RT) [7] Voting [19]
Probabilistic Naive Bayes (NB) [16, 20] Sum Rule [19]
Function Support Vector Machine (SVM) [17, 21, 2]
Instance Based k Nearest Neighbor (KNN) [1]
Rule Based Ripper [9, 23]

T 4.1
The classification algorithms and fusion functions used in H to create ensembles.

not as clear for bagging. Figure 4.2 shows no clear correlation between bagging and accuracy.
The difference in accuracies for the different ensemble methods is not clear when averaged
over all the data sets either. The heterogeneous ensembles and the decision tree ensembles
result in higher averaged accuracies, but the differences may not be significant. More work
on analyzing this data is needed.

0.810

0.815

0.820

0.825

0.830

0.835

0.840

0.845

Heter.

 RT
 KNN

 Ripper

 SVM

A
cc

ur
ac

y Voting (Bagging)
Sum Rule (Bagging)
Voting
Sum Rule

F. 4.1. The average accuracies over all data sets showing that ensembles that use the sum rule do better than
those that use voting.

The accuracies for each data set and the averaged accuracies are presented in Appendix C.
When the accuracies are averaged over all data sets, it is difficult to see any advantages over
using one ensemble method over the other. However when looking at the details of how these
methods perform on particular data sets, there are often large differences in accuracy. This
suggests that exploring these different ensemble methods may lead to better understanding
of the behavior of the different methods. However, the ensemble generation techniques need
to be fine tuned to take advantage of information known about the data set for which we are
building a classifier model.

We did notice that when the performance of a homogeneous ensemble was poor, relative
to the other homogeneous ensembles trained on the same data set, then the heterogeneous
ensemble also had lower performance. Examples of this can be seen in Figure 4.3. There are
points in this figure where the random tree ensembles perform much worse than the average
homogeneous ensemble, leading to mediocre heterogeneous ensemble performance. This
suggests that if one of the homogeneous ensembles performs poorly, we should not include
the associated base classifier type into the heterogeneous ensemble, or we should include less

S.A. Gilpin and D.M. Dunlavy 99

0.810

0.815

0.820

0.825

0.830

0.835

0.840

0.845

Heter. Sum

 Heter. Voting

 RT Sum

 RT Voting

 KNN Sum

 KNN Voting

 RIPPER Sum

 RIPPER Voting

 SVM Sum

 SVM Voting

A
cc

ur
ac

y

Without Bagging
With Bagging

F. 4.2. The average accuracies over all data sets, comparing the use of bagging for each ensemble method.

base classifiers of that type. More work is needed to see how well this idea generalizes to
other data sets.

Some of the results in Figure 4.3 indicate that all the ensemble methods performing
equally well for a particular data set. However, the results for the letter data set illustrate that
heterogeneous ensembles can outperform the homogeneous ensembles. In this work there
was no systematic method used for selecting what balance of base classifiers to use, and this
result indicates that paying closer attention to such a detail may be important.

0.140

0.240

0.340

0.440

0.540

0.640

0.740

0.840

0.940

1 6 11 16 21 26 31 36

Data Set

A
cc

ur
ac

y Heter.
RT
Avg. Others

F. 4.3. Accuracy of the heterogeneous ensemble, random tree ensemble, and the average for the rest of the
homogeneous ensembles, for each data set.

5. Future Work. This work was an exploratory experiment in learning more about cre-
ating heterogeneous ensembles and how they can be used effectively. The majority of the
work went into creating the H framework, which allows us to experiment with these
methods in future work.

We need to create better methods for training our ensembles for the data sets in which
we are interested. The training sets may include indicators which will allow us to fine tune
the way the base classifiers are generated or to help determine which ensemble techniques
to use. This will be the main focus of future work. We would also like to determine, in

100 Heterogeneous Ensemble Classification

general, whether the strategies used for training homogeneous ensembles should be used for
training heterogeneous ensembles as well. It will be important to explore which types of base
classifiers lead to better ensemble performance. This could result in either general guidelines
or a set of new methods.

We would also like to explore novel methods that take advantage of the unique nature of
heterogeneous classifiers. The different base classifier algorithms all have their own strengths,
and it would be interesting to try to use each of the base classifiers in ways that take advantage
of those strengths. For example, if a base classifier works better with nominal features, then
it could be trained on a subspace of the original training set with just the nominal features.

6. Conclusions. Our initial attempt at creating heterogeneous ensembles did not lead
to significant gains in classifier performance. However, the results presented here will serve
as a good benchmark for evaluating performance of ensemble classifiers. We have demon-
strated that heterogeneous ensembles perform better than homogeneous ensembles in some
cases, but more work is needed to better understand under what circumstances the use of
heterogeneous ensemble classifiers leads to this improvement. Using the H software
framework developed in this work, we can now investigate and evaluate new methods for
heterogeneous ensemble classification, and we intend to follow up on the many questions
identified in work presented here.

We also found that the sum rule performs better than voting on average. We expected
this because the sum rule has more information from the base classifiers, since it uses mea-
surement values. This result has lead us to believe that it is worth while to continue exploring
fusion functions that use measurement values.

7. Acknowledgments. We would like to thank Philip Kegelmeyer for providing the
data sets for our testing and for helpful suggestions throughout the project. We also thank the
developers of the W and J libraries used in H.

REFERENCES

[1] D. A D. K, Instance-based learning algorithms, Machine Learning, 6 (1991), pp. 37–66.
[2] M. A, E. B, L. R, Theoretical foundations of the potential function method in

pattern recognition learning, Automation and Remote Control, 25 (1964), pp. 821–837.
[3] R. B, L. H, K. B, W. P. K, A comparison of decision tree ensemble creation

techniques, IEEE Trans. Pat. Recog. Mach. Int., 29 (2007), pp. 173–180.
[4] J. B, D. D, S. V, T. B, W. S, Yucca mountain LSN archive assistant, Tech.

Rep. SAND2008-1622, Sandia National Laboratories, 2008.
[5] S. B W. W, On diversity and accuracy of homogeneous and heterogeneous ensembles, Intl. J.

Hybrid Intel. Sys., 4 (2007), pp. 103–128.
[6] L. B, Bagging predictors, Machine Learning, 24 (1996), pp. 123–140.
[7] L. B, Random forests, Machine Learning, 45 (2001), pp. 5–32.
[8] R. C, A. N-M, G. C, A. K, Ensemble selection from libraries of models, in

Proc. ICML, 2004.
[9] W. W. C, Fast effective rule induction, in Twelfth International Conference on Machine Learning, Morgan

Kaufmann, 1995, pp. 115–123.
[10] T. G. D, Approximate statistical tests for comparing supervised classification learning algorithms,

Neural Comput., 10 (1998), pp. 1895–1923.
[11] T. G. D, Ensemble methods in machine learning, in Proc. International Workshop on Multiple Clas-

sifier Systems, 2000, pp. 1–15.
[12] R. O. D, P. E. H, D. G. S, Pattern Classification, Wiley-Interscience, 2nd ed., 2000.
[13] R. P. W. D, The combining classifier: To train or not to train, in Proc. International Conference on Pattern

Recognition, vol. 2, 2002, pp. 765–770.
[14] T. F, An introduction to roc analysis, Pattern Recogn. Lett., 27 (2006), pp. 861–874.
[15] T. K. H, The random subspace method for constructing decision forests, IEEE Trans. Pattern Anal. Mach.

Intell., 20 (1998), pp. 832–844.

S.A. Gilpin and D.M. Dunlavy 101

[16] G. H. J P. L, Estimating continuous distributions in bayesian classifiers, in Eleventh Conference
on Uncertainty in Artificial Intelligence, 1995, pp. 338–345.

[17] S. S. K, S. K. S, C. B, K. R. K. M, Improvements to platt’s smo algorithm
for svm classifier design, Neural Comput., 13 (2001), pp. 637–649.

[18] J. K, M. H, R. P. W. D, J. M, On combining classifiers, IEEE Trans. Pattern Anal. Mach.
Intell., 20 (1998), pp. 226–239.

[19] L. I. K, Combining Pattern Classifiers: Methods and Algorithms, Wiley-Interscience, 2004.
[20] T. M. M, Machine Learning, McGraw-Hill, New York, 1997.
[21] J. C. P, Fast training of support vector machines using sequential minimal optimization, in Advances in

Kernel Methods: Support Vector Learning, MIT Press, Cambridge, MA, USA, 1999, pp. 185–208.
[22] S. R P. N, Artificial Intelligence: A Modern Approach, Prentice-Hall, Englewood Cliffs, NJ,

2nd ed., 2003.
[23] P.-N. T, M. S, V. K, Introduction to Data Mining, Addison Wesley, May 2005.
[24] W. W, D. P, J. E, Hybrid ensembles and coincident failure diversity, in Proc.

International Joint Conference on Neural Networks, 2001.
[25] I. H. W E. F, Data Mining: Practical Machine Learning Tools and Techniques, Second Edition

(Morgan Kaufmann Series in Data Management Systems), Morgan Kaufmann, June 2005.
[26] D. H. W, Stacked generalization, Neural Netw., 5 (1992), pp. 241–259.

102 Heterogeneous Ensemble Classification

Appendix

A. Base Classifiers. A base classifier refers to a single classifier model whose output
is used as input for an ensemble classifier. The base classifiers used in this work consist
of several typical learning models used in ensemble classifier models. The base classifiers
chosen are representative of the major strategies currently used in solving many classification
problems: decision trees, probabilistic models, functional models, instance-based models,
and rule-based models.

Decision Trees. Decision tree algorithms create models using a divide and conquer strat-
egy to recursively partition the feature space along feature axes until ”pure” partitions (i.e.,
partitions containing data from a single class only) are found. Choices for a partitioning strat-
egy (i.e., how to choose features and split values), stopping criteria for growing trees (i.e., if
and when to stop growing a tree before pure partitions are found), and a partition aggregation
strategy (i.e., how to prune a tree to avoid overfitting the data) lead to different decision tree
methods. Also, sampling from feature space at each decision node leads to random decision
trees. For small data sets, the resulting decision trees are often easy to interpret and analyze,
thus making decision trees a popular choice for data analysts [7].

Bayesian Classifiers. Bayesian classifiers consist of a probability model for each class
combined with a decision rule for choosing the class for a given data instance. The probability
model is a conditional model that is estimated using Bayes’ Theorem:

p(yi|xi) =
p(yi) p(xi|yi)

p(xi)
≡ posterior =

prior × likelihood
evidence

. (A.1)

The naive Bayes classifier is a particular Bayesian classifier which includes the assumption
that the features are conditionally independent:

p(xi|yi) = p(〈a1(xi), . . . , am(xi)〉|yi) =
m∏

j=1

p(a j(xi)|yi) . (A.2)

A common decision rule for Bayesian classifiers is to choose the class that is most probable
(i.e., the maximum a posteriori, or MAP, decision rule) [16, 20].

Support Vector Machines. Support vector machines (SVMs) [17, 21] are linear classi-
fiers designed to find a hyperplane which simultaneously minimizes classification error and
maximizes the distance, or margin, between the hyperplane and data instances from two dif-
ferent classes. Extensions of SVMs used in the work presented here include methods for
handling misclassifications (using soft, or relaxed, margins) and for embedding data into
higher dimensional feature spaces in order to estimate nonlinear decision boundaries in the
original feature space (i.e., the kernel trick [2]).

Nearest Neighbor Classifiers. Nearest neighbor classifiers [1] are examples of classifiers
that do not need training. To label a data instance, a nearest neighbor classifier examines the
instances in the training set that are closest to it in terms of feature similarity or distance in
some metric space and predicts a label based on the labels of those “neighboring” instances.
The class boundaries are therefor implicit, often leading to more flexible decision boundaries
than some of the other explicitly formed boundaries discussed in this section. Choices for
the number of neighbors, the similarity/distance measure, and voting/weighting schemes for
combining information (attributes, labels, etc.) from neighbors lead to different variants of
nearest neighbor classifiers.

Association Rules. Models created from these classifier methods are sets of rules con-
sisting of logical conjunctions of decision boundaries along feature axes. An example of a

S.A. Gilpin and D.M. Dunlavy 103

rule is

{a1 = “scalar”} ∧ {a2 > 1.0} =⇒ y1 . (A.3)

These rules are often built in a general to specific manner, where new conditions are added
to the conjunction as long as the rule continues to improve classifier performance (see Sec-
tion 3.2 for more information on classifier performance). An opposing approach, a specific to
general rule building strategy, starts with a specific rule targeting some instance in the training
set and then proceeds by removing conditions from the conjunction while the rule continues
to improve classifier performance [9, 23].

104 Heterogeneous Ensemble Classification

B. Data Sets Used in Experiments.

Continuous Nominal
Name Instances Classes Attributes Attributes
1 abalone 4177 29 7 1
2 anneal 898 6 6 32
3 bupa 345 2 6 0
4 car 1728 4 0 6
5 credit-g 1000 2 7 13
6 dna 3186 3 0 180
7 ecoli 326 8 7 0
8 glass 214 6 9 0
9 ion 351 2 34 0
10 iris 150 3 4 0
11 krk 28056 18 6 0
12 krkp 3196 2 0 36
13 led-24 5000 10 0 24
14 letter 36000 26 16 0
15 lrs 530 10 93 0
16 lymph 148 4 3 15
17 nursery 12961 5 0 8
18 page 5473 5 10 0
19 pendigits 10993 10 16 0
20 phoneme 5404 2 5 0
21 pima 768 2 8 0
22 promoters 106 2 0 57
23 ringnorm 300 2 20 0
24 sat 6435 6 36 0
25 segment 2310 7 19 0
26 shuttle 58000 7 9 0
27 sonar 208 2 60 0
28 soybean-small 47 4 0 35
29 splice 3190 3 0 60
30 threenorm 300 2 20 0
31 tic-tac-toe 958 2 0 9
32 twonorm 300 2 20 0
33 vehicle 846 4 18 0
34 vote 435 2 0 16
35 vote1 435 2 0 15
36 vowel 528 11 10 0
37 waveform 5000 3 21 0
38 yeast 1484 10 8 0
39 zip 9298 10 256 0

T B.1
Meta information for each data set used in the experiments.

S.A. Gilpin and D.M. Dunlavy 105

C. Numerical Results.

Data Set Heter. RT KNN RIPPER SVM
abalone 0.258 0.267 0.200 0.211 0.264
anneal 0.958 0.967 0.983 0.982 0.986
bupa 0.698 0.733 0.638 0.681 0.623
car 0.900 0.911 0.916 0.862 0.924
credit-g 0.734 0.735 0.735 0.733 0.743
dna 0.626 0.589 0.801 0.936 0.921
ecoli 0.834 0.859 0.840 0.853 0.847
glass 0.771 0.793 0.676 0.700 0.635
ion 0.929 0.920 0.846 0.900 0.889
iris 0.940 0.933 0.947 0.933 0.955
krk 0.550 0.538 0.687 0.747 0.287
krkp 0.946 0.940 0.962 0.992 0.970
led-24 0.736 0.741 0.624 0.744 0.750
letter 0.914 0.871 0.982 0.954 0.845
lrs 0.864 0.861 0.877 0.847 0.885
lymph 0.858 0.864 0.819 0.758 0.824
nursery 0.965 0.971 0.978 0.972 0.930
page 0.966 0.968 0.960 0.971 0.951
pendigits 0.972 0.971 0.993 0.974 0.980
phoneme 0.868 0.868 0.893 0.861 0.772
pima 0.747 0.766 0.724 0.754 0.768
promoters 0.906 0.858 0.811 0.821 0.908
ringnorm 0.953 0.963 0.563 0.733 0.717
sat 0.888 0.885 0.910 0.883 0.864
segment 0.963 0.965 0.964 0.965 0.930
shuttle 0.999 0.999 0.999 1.000 0.966
sonar 0.769 0.841 0.851 0.761 0.727
soybean-small 1.000 1.000 1.000 0.981 1.000
splice 0.742 0.726 0.813 0.950 0.924
threenorm 0.853 0.860 0.783 0.657 0.830
tic-tac-toe 0.902 0.896 0.977 0.979 0.983
twonorm 0.960 0.973 0.950 0.827 0.963
vehicle 0.729 0.719 0.691 0.701 0.752
vote 0.938 0.945 0.936 0.956 0.952
vote1 0.906 0.899 0.903 0.901 0.920
vowel 0.922 0.956 0.975 0.752 0.684
waveform 0.844 0.837 0.800 0.814 0.865
yeast 0.621 0.606 0.551 0.595 0.590
zip 0.924 0.899 0.967 0.907 0.949
mean 0.842 0.843 0.834 0.835 0.827
std 0.148 0.149 0.166 0.151 0.171

T C.1
Accuracy results for ensembles without bagging using the sum rule as the fusion function.

106 Heterogeneous Ensemble Classification

Data Set Heter. RT KNN RIPPER SVM
abalone 0.270 0.262 0.221 0.188 0.261
anneal 0.941 0.915 0.979 0.982 0.986
bupa 0.733 0.730 0.612 0.684 0.641
car 0.840 0.807 0.920 0.863 0.928
credit-g 0.721 0.717 0.737 0.727 0.752
dna 0.569 0.542 0.790 0.931 0.924
ecoli 0.859 0.849 0.840 0.807 0.864
glass 0.762 0.754 0.665 0.686 0.644
ion 0.917 0.920 0.843 0.900 0.866
iris 0.953 0.939 0.961 0.913 0.966
krk 0.464 0.467 0.695 0.715 0.284
krkp 0.884 0.861 0.953 0.994 0.949
led-24 0.660 0.631 0.648 0.744 0.747
letter 0.828 0.782 0.970 0.943 0.845
lrs 0.870 0.863 0.870 0.845 0.888
lymph 0.838 0.840 0.839 0.737 0.845
nursery 0.959 0.967 0.979 0.969 0.931
page 0.966 0.967 0.958 0.972 0.950
pendigits 0.970 0.964 0.993 0.972 0.980
phoneme 0.852 0.850 0.882 0.860 0.758
pima 0.762 0.759 0.734 0.758 0.779
promoters 0.820 0.802 0.792 0.803 0.906
ringnorm 0.937 0.967 0.547 0.754 0.730
sat 0.882 0.881 0.908 0.880 0.867
segment 0.951 0.952 0.956 0.968 0.934
shuttle 0.999 0.999 0.999 1.000 0.966
sonar 0.788 0.822 0.822 0.755 0.765
soybean-small 1.000 1.000 1.000 0.981 1.000
splice 0.848 0.814 0.780 0.947 0.919
threenorm 0.830 0.843 0.850 0.694 0.854
tic-tac-toe 0.872 0.874 0.979 0.973 0.983
twonorm 0.960 0.977 0.940 0.817 0.960
vehicle 0.736 0.723 0.705 0.686 0.748
vote 0.945 0.952 0.929 0.954 0.963
vote1 0.922 0.910 0.897 0.894 0.915
vowel 0.848 0.920 0.913 0.769 0.710
waveform 0.838 0.828 0.807 0.821 0.871
yeast 0.601 0.608 0.573 0.582 0.596
zip 0.900 0.866 0.963 0.897 0.950
mean 0.828 0.824 0.832 0.830 0.831
std 0.151 0.155 0.161 0.154 0.169

T C.2
Accuracy results for ensembles without bagging using voting as the fusion function.

S.A. Gilpin and D.M. Dunlavy 107

Data Set Heter. RT KNN RIPPER SVM
abalone 0.255 0.264 0.210 0.211 0.270
anneal 0.939 0.951 0.983 0.987 0.981
bupa 0.667 0.733 0.629 0.684 0.629
car 0.867 0.909 0.915 0.852 0.933
credit-g 0.742 0.742 0.745 0.717 0.742
dna 0.748 0.587 0.803 0.923 0.919
ecoli 0.846 0.853 0.844 0.807 0.864
glass 0.720 0.781 0.691 0.678 0.649
ion 0.912 0.932 0.852 0.889 0.874
iris 0.933 0.940 0.961 0.935 0.953
krk 0.594 0.539 0.686 0.748 0.285
krkp 0.931 0.943 0.958 0.992 0.969
led-24 0.687 0.739 0.626 0.742 0.747
letter 0.962 0.868 0.983 0.951 0.843
lrs 0.841 0.866 0.874 0.834 0.889
lymph 0.838 0.840 0.846 0.746 0.858
nursery 0.945 0.973 0.978 0.972 0.932
page 0.961 0.967 0.960 0.972 0.950
pendigits 0.979 0.970 0.993 0.974 0.980
phoneme 0.858 0.870 0.894 0.862 0.774
pima 0.749 0.764 0.720 0.758 0.775
promoters 0.821 0.820 0.821 0.830 0.925
ringnorm 0.894 0.973 0.567 0.780 0.727
sat 0.895 0.885 0.907 0.884 0.864
segment 0.954 0.959 0.966 0.965 0.932
shuttle 0.999 0.999 0.999 1.000 0.966
sonar 0.817 0.817 0.851 0.774 0.764
soybean-small 1.000 1.000 1.000 0.981 1.000
splice 0.810 0.732 0.810 0.947 0.924
threenorm 0.813 0.853 0.800 0.663 0.856
tic-tac-toe 0.888 0.924 0.973 0.981 0.983
twonorm 0.943 0.973 0.960 0.840 0.967
vehicle 0.719 0.730 0.714 0.698 0.773
vote 0.926 0.954 0.926 0.959 0.954
vote1 0.906 0.908 0.906 0.890 0.894
vowel 0.869 0.943 0.972 0.759 0.682
waveform 0.828 0.837 0.802 0.818 0.866
yeast 0.597 0.602 0.534 0.591 0.592
zip 0.944 0.901 0.966 0.902 0.948
mean 0.836 0.842 0.837 0.833 0.832
std 0.143 0.150 0.165 0.151 0.169

T C.3
Accuracy results for ensembles with bagging using the sum rule as the fusion function.

108 Heterogeneous Ensemble Classification

Data Set Heter. RT KNN RIPPER SVM
abalone 0.261 0.264 0.226 0.186 0.265
anneal 0.914 0.918 0.971 0.978 0.980
bupa 0.649 0.730 0.591 0.643 0.649
car 0.841 0.819 0.917 0.867 0.933
credit-g 0.725 0.718 0.742 0.718 0.758
dna 0.614 0.543 0.786 0.930 0.923
ecoli 0.847 0.841 0.863 0.811 0.862
glass 0.715 0.780 0.638 0.654 0.659
ion 0.900 0.931 0.843 0.903 0.878
iris 0.947 0.940 0.960 0.960 0.967
krk 0.452 0.465 0.693 0.706 0.283
krkp 0.880 0.849 0.952 0.990 0.951
led-24 0.625 0.643 0.653 0.740 0.743
letter 0.876 0.785 0.970 0.946 0.845
lrs 0.862 0.863 0.871 0.848 0.890
lymph 0.791 0.843 0.830 0.770 0.819
nursery 0.946 0.969 0.978 0.968 0.931
page 0.958 0.967 0.957 0.973 0.951
pendigits 0.964 0.965 0.992 0.973 0.980
phoneme 0.849 0.857 0.884 0.865 0.757
pima 0.714 0.740 0.743 0.738 0.766
promoters 0.735 0.698 0.736 0.886 0.935
ringnorm 0.867 0.953 0.550 0.760 0.720
sat 0.881 0.880 0.910 0.878 0.865
segment 0.935 0.959 0.957 0.964 0.935
shuttle 0.998 0.999 0.999 1.000 0.966
sonar 0.789 0.808 0.812 0.793 0.765
soybean-small 1.000 1.000 1.000 0.982 1.000
splice 0.837 0.809 0.767 0.951 0.920
threenorm 0.820 0.830 0.833 0.694 0.846
tic-tac-toe 0.860 0.872 0.976 0.980 0.983
twonorm 0.920 0.947 0.953 0.823 0.963
vehicle 0.714 0.721 0.695 0.693 0.741
vote 0.943 0.949 0.926 0.952 0.954
vote1 0.910 0.903 0.903 0.908 0.924
vowel 0.792 0.939 0.917 0.710 0.688
waveform 0.821 0.827 0.810 0.813 0.870
yeast 0.592 0.605 0.563 0.587 0.590
zip 0.899 0.868 0.961 0.894 0.946
mean 0.811 0.820 0.829 0.832 0.831
std 0.152 0.155 0.163 0.157 0.170

T C.4
Accuracy results for ensembles with bagging using voting as the fusion function.

CSRI Summer Proceedings 2008 109

TOWARDS SCALABLE PARALLEL HYPERGRAPH PARTITIONING

AYDIN BULUÇ∗ AND ERIK G. BOMAN†

Abstract. This is a work in progress report describing our attempts on developing a more scalable and robust
multilevel hypergraph partitioning algorithm. Current hypergraph partitioners are not as scalable as multigrid solvers
for linear systems of PDEs. We first identify the challenges that are unique to hypergraphs, which motivated the
development of our algorithms. Then, we present two new algorithms for hypergraph coarsening that are based on
aggregation of vertices instead of matching. Our algorithms are amenable to efficient parallelization, though we
present them as serial methods here.

1. Introduction. Hypergraphs are generalizations of graphs where the interactions be-
tween vertices can be beyond pairwise. They have been used to accurately model component
connectivity in VLSI circuits [1], communication volume in parallel sparse matrix-vector
multiplication [4], yeast protein complex networks [12], feature-object relationships in data
mining (such as term-document matrices) [16], and dependencies in distributed databases [13].
Partitioning hypergraphs is a fundamental operation that is used for load balancing, minimiz-
ing inter-processor communication, and clustering. The goal is to partition the vertices of a
hypergraph into a certain number of disjoint sets of approximately the same size so that a cut
metric is minimized. This problem is known to be NP-Hard [11].

A hypergraph H = (V,N) is defined by a set of vertices V and a set of nets (hyperedges)
N. Each net represents a relationship among a subset of vertices, which are also called the
pins of that net. The size of a net is given by the number of pins it has. Both nets and vertices
may have weights associated with them. For ease of reference, we call the weight of a vertex
its volume. We represent a hypergraph with a sparse matrix A, where columns correspond to
vertices and rows correspond to nets. An example hypergraph along with its sparse matrix
representation is given in Figure 1.1.

A =

a11 a12 0 0 a15

a21 a22 0 0 0
a31 0 0 a34 0
0 0 a43 a44 a45

1

n2

v4

v5

n4

v2

n1

v1

n3

v3

F. 1.1. A hypergraph and its sparse matrix representation in the row-net model. Circles represent vertices
and squares represent nets.

Among all the methods for partitioning hypergraphs, multilevel approaches proved to
be both more efficient and more robust [10]. Multilevel algorithms use a “V-cycle” imple-
mentation where the input hypergraph is successively approximated by coarser and coarser
hypergraphs until it becomes small enough so that a direct partitioner/solver can be applied
to it. Then, the coarse partitioning is projected back to get finer hypergraphs in the refinement
phase. The challenge is to create good coarse approximations, because coarsening is crucial
for the overall quality of the partitioning. Coarsening also has to be efficient as it is the most
time consuming part of the V-cycle.

∗Department of Computer Science, University of California, Santa Barbara, aydin@cs.ucsb.edu
†Scalable Algorithms Department, Sandia National Laboratories, egboman@sandia.gov

110 Scalable Hypergraph Partitioning

Our multilevel hypergraph partitioning approach is inspired by ideas from Algebraic
Multigrid (AMG). In AMG, a sequence of “coarser” grids are constructed to solve a linear
system. Thus, AMG solvers also have a V-cycle implementation similar to multilevel hyper-
graph partitioners. They have proved to be successful for large problems. Scalable parallel
software, such as Sandia’s ML [8] and LLNL’s Hypre [6], has been developed.

Two notions are crucial for AMG [3]:
1. The notion of strong influence that determines which variables depend on each other.

This drives both the coarse node selection and the mapping between coarse and fine
levels.

2. The notion of algebraic smoothness where any error that is not reduced by relaxation
on the fine grid is defined to be algebraically smooth.

AMG first fixes the relaxation operation, for example, Gauss-Seidel, then defines the
restriction/interpolation operations and selects coarse variables. In hypergraph partitioning,
the relaxation operation is most suitably Fiduccia-Mattheyses (FM) [7], but it is only applied
when going up in the V-cycle in current implementations of multilevel hypergraph partition-
ing. This is one of the fundamental differences in the execution of multilevel graph/hyper-
graph partitioning and AMG. In AMG, there are two relaxation steps: pre-smoothing and
post-smoothing. The former is applied to smooth the error in the fine grid and the latter is
applied to smooth the error in the coarse grid. On the other hand, in graph/hypergraph parti-
tioning, the relaxation is applied only as a post-smoothing operation. Therefore, coarsening
is more important for graphs/hypergraphs.

For choosing coarse vertices, we rely on the notion of strong influence as AMG does. On
the other hand, quantifying what constitutes as smooth error in hypergraph partitioning is not
known. The (k − 1)-cut metric is an ideal candidate except that we do not have access to it in
the coarsening phase. It would have been necessary to define a variable similar to the residual
in AMG, if we were to rely on the notion of algebraic smoothness. Since relaxation steps are
not applied during the coarsening phase of the V-cycle in hypergraph partitioning, algebraic
smoothness is not applicable.

For describing algorithms, we use the colon notation of Mr. That is to say, A(:, v)
denotes the submatrix indexed by the v1

st, v2
nd, ..., vn

th columns, where v is a vector of indices
with size n. The row-wise notation is similar. For a vector with possible range {1, ...,m},
Comp(v) denotes the complement of v, i.e. a vector of size m − n that contains all the values
in {1, ...,m} except for the values indexed by {v1, ..., vn}. The elementwise operations are
denoted by a dot before them, such as ./ for elementwise division and .∗ for elementwise
multiplication.

1.1. Our contributions. Our main contributions are in the coarsening phase but the re-
finement step is also modified to work together with the new coarseness scheme. Although
there are many variations, the common existing methods for coarsening can be roughly clas-
sified as:

• Matching-based coarsening, which involves computing a maximal matching on the
similarity graph given by AT A, and then contracting pairs of matched vertices [4, 5].

• Hyperedge coarsening, which involves choosing a subset of hyperedges, and then
merging all vertices in each of those selected hyperedges [10].

Instead, our methods are aggregative, where fine vertices are aggregated around coarse
seed vertices. Our first method, called approximate weighted aggregation (AWA), uses weighted
aggregation where each vertex can be divided into fractions that are mapped to different ag-
gregates in the coarse hypergraph. Our second method is called randomized strict aggrega-
tion (RSA), which uses strict aggregation and the rules of interpolation are determined in a
randomized way. In weighted aggregation, interpolation order is defined as the maximum

A. Buluç and E.G. Boman 111

number of fractions a vertex can be divided into at every level of the algorithm. We have
a conservative approach with using fractions due to the issues explained in the next section.
Therefore, the interpolation order is kept low.

To the best of our knowledge, neither a strict aggregative method, nor a weighted one has
been applied to hypergraph coarsening. Our work generalizes the approach by Safro et al. [14]
from graphs to hypergraphs. Even though our work is presented in serial, it is amenable to
efficient parallelization as it is either readily vectorized or composed of independent loops that
can execute in parallel. The data from the experiments are not available yet, but we believe
that our algorithms will show promise since they are based on AMG solvers that proved to
successful and scalable.

2. Aggregative Coarsening. Since the early days of multilevel graph partitioning, coarser
graphs were constructed by matching pairs of vertices and contracting edges that connects
matched pairs [9]. Although this approach initially allowed only pairs of vertices to be clus-
tered, more general approaches that enable multinode clustering has also been also developed
later.

Aggregative clustering, on the other hand, chooses a certain number of coarse vertices
that serve as seeds for aggregates and lets fine vertices aggregate around those seeds. This
distinction of seeds versus non-seeds lets the algorithm decouple the seed selection phase
with the interpolation phase where it decides the aggregation of fine vertices around seeds.
Aggregation can be either strict or weighted. In the former, each fine vertex is a member
of only one aggregate, where in weighted aggregation each fine vertex can be divided into
fractions and become members of multiple aggregates. We differentiate between matching
and strict aggregation due to this distinction of seeds versus non-seeds in the latter. For coars-
ening graphs, Safro et al. uses AMG based weighted aggregation [14]. We first summarize
their approach in Section 2.1, and then explain why a direct application of their method is
impractical for hypergraphs in Section 2.2. The set of coarse vertices (seeds) are donated by
C, and the set of fine vertices (non-seeds) by F, where V = C ∪ F.

2.1. Coarsening Graphs with Weighted Aggregation. The aggregative coarsening
process in multilevel graph partitioning involves three steps: seed selection for aggregates,
determining the rules of interpolation for non-seed vertices, and finally establishing the con-
nections between aggregates. Seeds are chosen according to their ability to attract other ver-
tices around them. Initially all vertices are considered to be in F and nodes are sequentially
transfered to C if they are likely to aggregate large volumes of fine vertices around them.
Once the seeds are fixed, the rules of interpolation for non-seed vertices are determined by
running a similar procedure, except that the actual volumes are computed since F and C are
known. The interested reader should consult the original paper [14].

Setting up the strength of connections between aggregates is done in such a way that
the cut size is preserved in a probabilistic sense. Every edge from vertex i (vi) to vertex j
(v j) in the fine graph is essentially partitioned into (possibly many) pieces depending on the
distribution of the fractions of the vertices that it connects. The weight of the edge connecting
aggregates k and l is given by

wc
kl =

∑
i, j

Pikwi jP jl, (2.1)

where wi j is the weight of the edge between vi and v j in the fine graph, Pik is the fraction
of vi’s volume that contributes to aggregate k (Ak), and P jl is the fraction of v j’s volume that
contributes to aggregate l (Al). We can also write the interpolation operation in matrix form:
Ac = PT AP. Please note that the matrix A here is the adjacency matrix of the graph. Since

112 Scalable Hypergraph Partitioning

these fractional volume assignments are going to be resolved during the refinement phase,
we can also think of Pik as the probability of vi being a member of aggregate Ak. The crucial
property of this weight assignment is that for any partitioning of the coarse graph, the cut size
is preserved in a stochastic manner when injected back to the fine graph.

2.2. Issues Specific to Hypergraphs. Hypergraphs are conceptually generalized graphs
in the sense that connections of vertices need not be pairwise. A hyperedge can connect any
number of vertices. This makes them more expressive than graphs but operations on them
are usually more computationally expensive than operations on graphs. We explain some of
these issues in this section, whereas Section 3 includes the algorithms we propose in response
to those issues.

The notion of “influence” on graphs, is defined in terms of the ability of a node to attract
other nodes around it. The metric used by Safro et al. relies on the degrees of vertices [14].
In a graph, this means that a vertex with volume vi, and degree di (i.e. it has di vertices that
are immediately connected to it through a single edge), contributes vi/di volume to each of
its neighboring vertices.

For hypergraphs, we specifically avoided imitating the vertex-vertex influences approach
used in graphs and opted for a diffusion-based approach. Our first motivation is economical.
Finding a connectedness measure between all pairs of vertices requires computing the matrix
product AT A. We consider doing a full sparse matrix-matrix multiplication to be an overkill
for a heuristic with no guarantees. It has also been observed that the product may be quite
dense to store, so computing it may require multiple passes [5] that makes the operation too
expensive for large problems. The second motivation is that our diffusion-based approach
implicitly gives preference to smaller hyperedges, helping to reduce the exposed hyperedge
weight quickly [10].

A3

c3

f1
f2

N1

c4

c1 c2

N3N2

A1

c1

f1/2

A2

c2

f2/2

c3

f1/4 f2/4

f3 A4

c4

f1/4 f2/4

f4

N1

N4

f3

N5

f4

A1 A2

A4A3

N1/4
N1/4N1/4

N1/4

N7

N6

f5

f5/2f5/2

(a) Seed Selection

A3

c3

f1
f2

N1

c4

c1 c2

N3N2

A1

c1

f1/2

A2

c2

f2/2

c3

f1/4 f2/4

f3 A4

c4

f1/4 f2/4

f4

N1

N4

f3

N5

f4

A1 A2

A4A3

N1/4
N1/4N1/4

N1/4

N7

N6

f5

f5/2f5/2

(b) Interpolation rules

c1

f1
f3

N1

c2

c3 c4 A1 c3

f1/2

A2c4

f3/2

c1

f1/4 f3/4

f5 A4

c2

f1/4 f3/4

f6

N1

f5 f6

A1 A2

A4A3

N1/4
N1/4N1/4

N1/4

A3

(c) Connection Setup

F. 2.1.

Another complication arises when we try to preserve the probabilistic hyperedge cut size
in weighted aggregation. Figure 2.1(a) shows the fine graph after seeds are chosen accord-
ing to some criteria. The seed nodes (c1, ..., c4) are gray, and non-seeds (f1, ..., f4) are white.
Figure 2.1(b) shows the aggregates formed around seed vertices following the rules of inter-
polation described in Section 3.2. Here, fi/n means 1/n fraction of fine vertex fi.

The net N1 connects at least some fraction of vertices in each of the four aggregates
(A1, ..., A4). However, by letting N1 connect all four aggregates, we cannot assign it an ap-
propriate uniform weight that preserves the cut size in a stochastic manner. Consider the
following possible partitionings (bisections) :

A. Buluç and E.G. Boman 113

1. P = {{A1, A2, A3}, {A4}}. The cut size of this bisection is guaranteed to be 1 since N1
connects the seeds of A3 and A4, namely it connects c3 and c4

2. P = {{A1, A2}, {A3, A4}}. As said before, N1 is definitely connected to both A3 and
A4. The probability that it connects neither A1 nor A2 is 1/2 · 1/2 = 1/4. Therefore,
the expected cut size is 1 − 1/4 = 3/4.

3. P = {{A1}, {A2, A3, A4}}. The expected cut size of this bisection is 1/2 as the prob-
ability of N1 connecting A1 is equal to the probability of f1 being a member of A1,
which is 1/2.

The moral of this example is that it demonstrates the challenges of capturing the topology
right in the case of hypergraphs. The correct modelling of N1 in the coarse hypergraph is
shown in Figure 2.1(c), where each of N1/4 gets 1/4 of the total weight of N1. However, the
number of possible net combinations that would capture the semantic correctly can be expo-
nential. Such a problem did not exist for graphs since edges are always pairwise, avoiding
any combinatorial explosion. Also, a graph can only get so dense (|E| = O(|V|2), but the
number of possible nets in an hypergraph has the same cardinality as the power set.

3. Aggregative Hypergraph Coarsening. We present our two algorithms together and
point out differences whenever necessary. Our randomized strict aggregative method, RSA,
has the advantage of preserving the cut size but it may be less expressive than AWA, our
weighted aggregative method. AWA uses weighted aggregation with approximate net (hy-
peredge) weights. It requires more effective limiting of interpolation order to ensure that
successively coarser hypergraphs indeed get smaller. Both algorithms has the same seed se-
lection stage, but they differ in interpolation and connection setup stages.

3.1. Seed Selection. We choose seeds using a similar idea from aggregative graph
coarsening [14]. However, our method is specifically tailored to hypergraphs and achieves
low computational complexity by not examining vertex-vertex influences. We use the future
volume concept where the future volume of an aggregate seeded by vertex vi is the amount of
volume it can accumulate from other vertices assuming that all other vertices are non-seeds.
The algorithm is iterative in nature. Every iteration involves two sparse matrix-vector multi-
plication (matvec) operations. During the first iteration, every vertex is assumed to be in F.
With the first matvec, we calculate how much of its volume is going to disseminated among
its neighboring hyperedges. In our scheme, a vertex with volume vi and ni hyperedges con-
nected to it contributes vi/ni of its volume to each of those hyperedges. Then, the volumes
accumulated in hyperedges are disseminated equally to vertices connected to them.

The full algorithm is given in Figure 3.3. Recall that the the input A is a sparse matrix that
represents the hypergraph according to the row-net model. In the pseudocode, the nonzero
values in A are volumes of vertices in the hypergraph. In real implementations, weights are
represented as separate arrays to avoid repetitions and to save space.

By the time we have calculated the future volumes at line 6, total volume is preserved,
i.e. the average future volume is 1. The Top(v, p) function returns the indices of p elements
of vector v with highest values. We could have just picked vertices with larger than average
future volumes but that would unnaturally favor highly connected clusters. As we have no
knowledge about seeds in this step, we can incorrectly choose all the vertices in a highly
connected cluster as seeds. That would leave many loosely connected clusters with no seeds
at all.

An example hypergraph is given in Figure 3.1, which can be bisected with an hypergraph
cut size of only 1. The values inside the vertices are their (undamped) future volumes com-
puted by the initial iteration. This is an hypothetical example that is bisected with at most
25% imbalance, strict-aggregation process, and two aggregates only. The difference between
a direct (one step) seed selection and an iterative one can be seen in Figures 3.2(a) and 3.2(b).

114 Scalable Hypergraph Partitioning

2.16

0.94

0.85 0.85

N2

0.56

N1

0.85 0.85

0.94

N3

N4

F. 3.1. A hypergraph after initial future volume calculation

Aggregate #1

Aggregate #2

2.16

0.94

0.85 0.85

N2

0.56

N1

0.85 0.85

0.94

N3N4

(a) Direct seed selection

Aggregate #2

Aggregate #1

2.16

0.39

0.80 0.80

N2

0.51

N1

0.80 0.80

0.39

N3

N4

(b) Iterative seed selection

F. 3.2.

Again, seed vertices are marked with gray. We see that the iterative version avoids formation
of clustered seeds by correctly damping the future volumes as new vertices are added to the
set of seeds.

A fully sequential algorithm that chooses seeds one by one (also called agglomerative)
seems to be more effective, but it is also very hard to parallelize. On the other hand, a one-
step algorithm offers the highest inherent parallelism, but does not perform as well. Here, we
make a compromise between those two extremes by opting for an iterative yet parallelizable
method that chooses seeds in batches. Each iteration adds another p% of all vertices to the
set of seeds (p=10 in the code), so that we iterate just 4-5 times until we have enough seed
vertices. For those who are familiar with the BSP model [15, 2], this also means the algorithm
halts in 4-5 parallel BSP steps.

Therefore, we first pick the most obvious candidates for being seeds. For the remaining
seeds we use an iterative approach that damps the future volume of a node according to
its coupling to an already chosen seed vertex. It is crucial to note that this damping is not

A. Buluç and E.G. Boman 115

seeds : R|C|×1 = C-S(A : R|N|×|V|)
1 vsize← CS(A)
2 hsize← RS(A)
3 x← 1./vsize
4 y← A · x
5 y← y./hsize
6 vol← AT · y
7 seeds← T(vol, 0.1 · |vol|)
8 while (|seed| < limit)
9 do nonseeds← C(seeds)

10 ncoarse← ENC(A)
11 vcoarse← A(:,nonseeds)T · ncoarse
12 damp← vcoarse./vsize(nonseeds)
13 ind← T(vol(nonseeds). ∗ (1 − damp), 0.1 · |vol|)
14 seeds← [seeds; ind]

F. 3.3. The algorithm to choose seed vertices

cumulative. In other words, the (i + 1)th damping is applied to the initial future volumes, not
to the output of the ith damping.

Coarseness of a net is the ratio of the number of coarse vertices attached to it to the total
number of vertices attached to it. Exclusive coarseness, which is defined with respect to a
vertex, is the coarseness of a net when we ignore the reference vertex. For example, if a net
has 2 seeds and 3 nonseeds connected to it, its exclusive coarseness with respect to one of its
neighboring seeds is 1/4 whereas it is 2/4 with respect to a neighboring nonseed. Calculating
the number of coarse neighbors of each net can done in potentially sublinear time (with an
appropriate O(flops) matvec implementation) by multiplying A with a binary vector of size
|V| that has 1 for every coarse vertex, and 0 for every fine vertex. The element-wise ratio of
this vector and the hsize vector gives the net coarseness values. The coarseness values of nets
are then diffused into vertices connected to them, using a matvec with the matrix representing
the hypergraph induced by the vertices still in F and the net coarseness vector.

Pure weighted aggregation, however, may create quite dense vertex mappings since is has
no way of controlling the interpolation order. As the size distribution of the nets gets skewed,
the computational problem is exacerbated. For an example, think about a big hyperedge. The
hypergraph induced by the vertices attached to a net with size 10 is shown in Figure 3.4.
From the perspective of the fine vertex f2, all coarse vertices have the same similarity metric,
so that its volume is divided equally into 5 during the coarsening. When the size of the
net is significantly big, it becomes a computational burden to keep track of many fractional
mappings.

The flexibility of the iterative seed selection can be used to mitigate this problem as
well. This is done by limiting the number of vertices chosen as seeds at each iteration. We
can simply label a net “frozen” after any iteration. The fine vertices connected to a frozen
net are not eligible for being seeds in the subsequent iterations, thus implicitly limiting the
interpolation order. The freeze operation could have easily been implemented by setting the
coarseness values of nets that already has more coarse vertices that a prespecified threshold
manually to 1. However, we opted not to limit the interpolation order this way as it was not
respecting the topology of the underlying hypergraph, and even an iterative approach might
not be enough to keep the level mapping matrix (F⇒ C) sparse enough.

One commonly used method to get around this problem is to truncate the interpolation

116 Scalable Hypergraph Partitioning

c3

c4

c1

n1

c2

f1
f2

n2

c5

F. 3.4. An hyperedge with 5 coarse vertices attached to it

operator by ignoring all entries in a column that are less than the mean of that column, and
distributing their values to the remaining entries in that column. By looking at Figure 3.4,
we see that f2 is a member of 5 different aggregates, in an equal manner. Therefore, we
cannot truncate any entries. However, f1 is strongly connected to c3 through two different
nets and relatively weakly connected to remaining seeds. Our truncation is going to ignore
all less than average couplings, thus deleting any mappings from f1 to c1, c2, c4, and c5.
However, remember that we opted for a diffusion-based algorithm in order to avoid computing
expensive vertex-vertex influences. For the same reason, we also do not want to explicitly
construct the F ⇒ C mapping. Instead, we represent the mappings C ⇒ N and N ⇒ F in
sparse matrices PN

C and PF
N. The actual fractional mapping from F to C is implicitly stored as

the product of those two relatively sparser matrices:

PF
N · P

N
C = PF

C ∈ R
|F|×|C| (3.1)

We control the sparsity of PN
C and PF

N matrices when we determine the interpolation rules
in the next phase.

3.2. Rules of Interpolation. We first determine the C ⇒ N mapping by letting each
coarse vertex choose the set of fine vertices that are going to be members of its aggregate.
Letting the coarse vertices initiate the mapping is more amenable to efficient implementation
and it allows us to control sparsity without explicitly forming PF

C. Each seed chooses a con-
stant (MAXNEIGH) number of nets to invade/claim among its neighbors, based on the following
criteria:

• Select the net with lowest exclusive coarseness value. We assume hi > 1, as nets with
size 1 does not contribute to the cut metric, thus should have been pruned before.

• In the case of ties, choose the net with smaller size (not shown in code).
It is worth noting that the number of nets a seed can claim is constant only in that level

of the algorithm. It adaptively changes as the density of the hypergraph changes on different
levels of coarsening. The number of coarse vertices that claim a given net are naturally
limited. Even when a fine vertex chooses a big net to disseminate its volume, the mapping
is not going to be too scattered since that big nets are not likely to be claimed by many
seeds. PN

C is guaranteed to have at least one nonzero per column after the invasion step, but
there might possibly be completely empty rows that represent unclaimed nets. This is not a
problem unless there are some fine vertices that are connected to those unclaimed nets only.
In that case, we add those orphaned fine vertices to our set of seeds, but they won’t have
any fine vertices attached to them as they have not invaded any nets, i.e. they form their

A. Buluç and E.G. Boman 117

PN
C : R|N|×|C|,PF

N : R|F|×|N| = I(A : R|N|×|V|, seeds : R|C|×1)
1 ncoarse← ENC(A)
2 for (cvtx ∈ seeds)
3 do nnets = NN(cvtx)
4 fnnets← B(ncoarse(nnets), INVLIMIT)
5 PN

C(fnnets, cvtx)← 1./fnnets
6 seeds = [seeds; ERI(PN

C)]
7 for (f vtx < seeds)
8 do nnets = NN(f vtx)
9 cnnets← T(ncoarse(nnets), MAXNEIGH)

10 PF
N(f vtx, cnnets)← 1./cnnets

F. 3.5. The algorithm to determine the rules of interpolation

own aggregates. Our experiments show that less than 5% of all vertices are orphaned on the
average.

Next, we have to determine N ⇒ F mapping. We do this by examining the fine vertices
and letting each fine vertex choose MAXNEIGH of its coarsest neighboring hyperedges. Both
loops that determine mappings can easily be vectorized or implemented in an embarrassingly
parallel way because there are no dependencies in subsequent iterations. In each iteration, we
operate on a different column of the corresponding matrix.

Both Top(v, p) and Bottom(v, p) functions can be implemented to run in near linear time
by using a priority queue of size of p + 1. In the case of Top, we use a min-heap and insert
the first p + 1 elements. For the rest of the elements, we do an extract-min operation before
we insert a new element. This way, we always keep the top p elements in the heap. This runs
in O(n log p) ≈ O(n) time, because p is a very small constant such as 3 or 4.

3.3. Setting-up Coarse Connections. Setting up net (hyperedge) connections for the
coarse hypergraph is arguably the most important and the most computationally demanding
phase. The inputs of this phase are the mapping sparse matrices PN

C and PF
N. For example,

assuming that each seed can invade at most two nets, the mapping matrices of the hypergraph
in Figure 2.1(a) are

PN
C =

0 0 1/2 1/2

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

1/2 1/2 0 0

,PF
N =

1/2 1/2 0 0 0 0 0

1/2 0 1/2 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 0 1

.

For each net in the fine hypergraph, we need to find its uncertain connections. If a net
is connecting an aggregate with probability less than 1, then it is said to have an uncertain
connection to that aggregate. For example, in Figure 2.1(b), N1 has uncertain connections
to both A1 and A2, with probability 1/2 each. We will come back on the details of finding
those uncertain connections, but for now, assuming that they exist, the question is how to treat
them.

118 Scalable Hypergraph Partitioning

For reasons explained in Section 2.2, it is computationally infeasible to split the net to
capture the semantics of those uncertain connections. We propose two different solutions to
overcome the computational problem.

So far, we have been keeping the probabilities and postponing the decisions in order
to capture the global picture better, at the expense of increasing complexity. At some point
(usually during refinement), however, an indicator random variable needs to be drawn to
realize the actual connection. The RSA algorithm makes this realization for edges early in
the algorithm (during coarsening) to keep the complexity manageable while preserving the
cut size in a stochastic manner. Concretely, for each uncertain connection with probability
p, we generate a real random number r ∈ [0.0, 1.0) and keep that connection if and only if
r ≤ p. This way, we avoid any combinatorial explosion on the number of nets of the coarser
hypergraph.

On the other hand, the AWA algorithm just approximates the edge weights by keeping
the weight of a net intact in the coarser graph, yet having it connect all the aggregates that
contains at least a fraction of its pins from the fine graph.

After interpolation, to actually determine uncertain connections of a net Ni, we first de-
termine its fine pins, {pins(Ni) ∈ F}, that are not members of an aggregate whose seed Ni

connects. This set is likely to be composed of fractional values since some fraction of a fine
pin may be a member of an aggregate whose seed is connected by Ni whereas the remain-
ing fraction may be a member of an aggregate whose seed is not connected by Ni. This
uncertainty set is found by:

Uset(Ni) = ones(A(Ni,nonseeds)) − PF
N(:,Ni)T (3.2)

We can treat the whole set of Uset values as a matrix where the N th
i row gives information

about the fine vertex fractions that Ni has to connect. For example, for the hypergraph in
Figure 2.1(b), Uset is:

Uset =

1/2 1/2 0 0 0

1/2 0 0 0 0

0 1/2 0 0 0

0 0 0 0 0

0 0 0 0 0

1 1 0 0 1

0 0 0 0 0

⇒ Uset′ =

0 1 0 0 0

1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1 1 0 0 1

0 0 0 0 0

Our two methods differ in the way they treat the Uset matrix. While RSA draws an

indicator random variable for each fractional value, AWA rounds up all nonzero values to 1.
They both output a binary matrix Uset′ after that stage, yet they output essentially different
matrices (the example above shows a possible Uset′ using RSA).

More concretely, both algorithms construct Ac by scanning pins of nets. For every pin of
the currently examined net Ni in A:

(a) If it is a seed vertex, just add it to pins(Ni) in Ac

(b) If it is a nonseed vertex, say vi, first check if it has been determined before. If not,
then determine the row PF

N(vi, :).
The determination is done by rounding up to zero in the case of AWA and by drawing a

random variable in the case of RSA. The result of the determination gives us a set of coarse

A. Buluç and E.G. Boman 119

nets. We ignore Ni if it is a member of that set. For every other member net N j,i, we find the
set of seed vertices that invades it by looking at PN

C(N j, :). AWA adds every seed in PN
C(N j, :) to

the set of pins(Ni) in Ac, whereas RSA again draws a random variable to determine whether
that aggregate should be connected by N j. In order to perform constant time membership
queries, we use a dense vector of size |seeds|. It is also important to mention that we do not
determine PN

C , i.e. we will draw another random variable next time the same row of PN
C is

examined. This is done to prevent RSA to degenerate into net (hyperedge) coarsening. PF
N

and PN
C matrices should be represented in CSR format since we only access them by rows.

4. Conclusions and Future Work. We proposed two new hypergraph coarsening al-
gorithms, both of which use the new aggregative hypergraph coarsening paradigm. Our
first method uses randomization to lower the computational costs of hypergraph coarsen-
ing whereas the second one relies on weighted aggregation with approximate net weights.
We are currently implementing prototypes for our methods so that they can be evaluated in a
multilevel framework. Our experiences from the implementation phase are likely to suggest
minor modifications to our algorithms.

Acknowledgements. We wish to thank Bruce Hendrickson, Ümit Çatalyürek, and Cedric
Chevalier for stimulating discussions throughout the period of this work. This work was
funded by the US Department of Energy’s Office of Science through the CSCAPES Institute
and the SciDAC program.

REFERENCES

[1] C. J. A A. B. K, Recent directions in netlist partitioning: A survey, Integration: The VLSI
Journal, 19 (1995), pp. 1–81.

[2] R. H. B, Parallel Scientific Computation: A Structured Approach Using BSP and MPI, Oxford Uni-
versity Press, 2004.

[3] W. L. B, V. E. H, S. F. MC, A multigrid tutorial: second edition, Society for Industrial
and Applied Mathematics, Philadelphia, PA, USA, 2000.

[4] U. V. C C. A, Hypergraph-partitioning-based decomposition for parallel sparse-matrix
vector multiplication, IEEE Transactions on Parallel and Distributed Systems, 10 (1999), pp. 673–693.

[5] K. D, E. B, R. H, R. B, U. C, Parallel hypergraph partitioning for
scientific computing, in Proc. of 20th International Parallel and Distributed Processing Symposium
(IPDPS’06), IEEE, 2006.

[6] R. D. F U. M. Y, hypre: A library of high performance preconditioners, in ICCS ’02: Proceed-
ings of the International Conference on Computational Science-Part III, London, UK, 2002, Springer-
Verlag, pp. 632–641.

[7] C. M. F R. M. M, A linear-time heuristic for improving network partitions, in DAC ’82:
Proceedings of the 19th conference on Design automation, Piscataway, NJ, USA, 1982, IEEE Press,
pp. 175–181.

[8] M. G, C. S, J. H, R. T, M. S, ML 5.0 smoothed aggregation user’s guide, Tech. Rep.
SAND2006-2649, Sandia National Laboratories, 2006.

[9] B. H R. L, A multilevel algorithm for partitioning graphs, in Supercomputing ’95: Pro-
ceedings of the 1995 ACM/IEEE conference on Supercomputing, New York, NY, USA, 1995, ACM,
p. 28.

[10] G. K, R. A, V. K, S. S, Multilevel hypergraph partitioning: applications in
VLSI domain, IEEE Trans. Very Large Scale Integr. Syst., 7 (1999), pp. 69–79.

[11] T. L, Combinatorial Algorithms for Integrated Circuit Layout, John Wiley & Sons, Inc., New York,
NY, USA, 1990.

[12] E. R, A. T, A. P, A hypergraph model for the yeast protein complex network, IPDPS,
10 (2004), p. 189b.

[13] D. L S. S, Partitioning similarity graphs: A framework for declustering problems, Informa-
tion Systems Journal, 21 (1996), pp. 475–496.

[14] I. S, D. R, A. B, Graph minimum linear arrangement by multilevel weighted edge contrac-
tions, J. Algorithms, 60 (2006), pp. 24–41.

[15] L. G. V, A bridging model for parallel computation, Commun. ACM, 33 (1990), pp. 103–111.
[16] D. Z, J. H, B. S̈, Learning with hypergraphs: Clustering, classification, and embedding,

in Advances in Neural Information Processing Systems 19, B. Schölkopf, J. Platt, and T. Hoffman, eds.,
MIT Press, Cambridge, MA, 2007, pp. 1601–1608.

CSRI Summer Proceedings 2008 120

PROBLEM-SPECIFIC CUSTOMIZATION OF (INTEGER) LINEAR
PROGRAMMING SOLVERS WITH AUTOMATIC SYMBOL INTEGRATION

NICOLAS L. BENAVIDES ∗, ALESSIO CAROSI †, WILLIAM E. HART‡, VITUS J. LEUNG§, AND

CYNTHIA A. PHILLIPS‡

Abstract. We describe the Solver Utility for Customization with Automatic Symbol Access (SUCASA), a
mechanism for generating (integer) linear programming solvers derived from PICO that integrate algebraic model-
ing constructs. SUCASA allows application developers to access parameters, constraints, and variables from the
application algebraic model within PICO. This allows rapid development of problem-specific incumbent heuristics
and cutting planes. We briefly describe SUCASA and illustrate its use in two applications: generating graphs with
specific degree sequence and scheduling the movements of mobile data collection units in wireless sensor networks.

1. Introduction. Algebraic Modeling Languages (AMLs) are essential tools for solv-
ing complex, large-scale optimization applications. AMLs are high-level programming lan-
guages for describing and solving mathematical problems, particularly optimization-related
problems [10]. AMLs like AIMMS [1], AMPL [3, 8] and GAMS [9] have programming lan-
guages with an intuitive mathematical syntax that supports concepts like sparse sets, indices,
and algebraic expressions. They provide a mechanism for defining variables and generat-
ing constraints with a concise mathematical representation, which is essential for large-scale,
real-world problems that involve thousands of constraints and variables.

AMLs interface to solvers to analyze algebraic models. Typically, an AML system trans-
lates a problem into a standard format, such as a matrix-based representation for a mixed-
integer linear program (MILP). The solver returns solution information that the AML system
then makes available to the user within the model. For example, AMPL communicates to
solvers via files, so it will work with any solver that can read and write files in the format
AMPL expects. AML systems like ILOG’s OPL are tightly coupled to a single solver.

For integer programming problems, a developer may know of some exploitable problem
structure that would lead to more efficient ways to find heuristic solutions, better cutting
planes, etc. It would be convenient for the developer to write such problem-specific code
using the variables, parameters, sets, etc, from the model. However, we are aware of no
AML system that provides this facility. Some systems provide callbacks from an API in
C++, JAVA, or other language to augment the solver (e.g. to add a cutting plane). However,
the user must know the location of their variables in the solver’s linear variable order. For
example, the user’s model might have two types of variables, a two-dimensional variable y
and a three-dimensional variable z. To write a cutting plane, the user must know that y3,20 is
variable x1003 and that z1,24,541 is variable x246981.

In this paper, we describe an example of a tool that makes symbols from an AML model
available to a MILP solver. This allows users to customize the search within the solver us-
ing their problem’s natural representation. Specifically, we describe how we automatically
customize the PICO MILP solver for AMPL models. PICO’s software library uses a flexible
C++ class hierarchy for MILP solvers which allows users, and hence SUCASA, to extend
PICO’s MILP solvers through class inheritance. Though we use an AMPL solver as part
of SUCASA, we are working toward a system that provides this capability using only open-

∗Santa Clara University; NBenavides@scu.edu
†Dipartimento di Informatica, Università di Roma “La Sapienza”; carosi@di.uniroma1.it
‡Sandia National Laboratories, Discrete Math and Complex Systems Department, PO Box 5800, Albuquerque,

NM 87185; wehart,caphill@sandia.gov
§Sandia National Laboratories, Computer Science and Informatics Department, PO Box 5800, Albuquerque, NM

87185-1318; vjleung@sandia.gov

N. L. Benavides, A. Carosi, W. E. Hart, V. J. Leung, and C. Phillips 121

source tools. Though SUCASA currently supports only AMPL, the methodology we describe
could be adapted to other AMLs, as well as other solvers that support an extensible solver
interface.

Given an AMPL model, the Solver Utility for Customization with Automatic Symbol
Access tool automatically derives new problem-specific classes for the major PICO search-
related classes and creates a driver routine. The new classes include definitions of the AMPL
parameters, constraints, and variables. Specifically, the new classes can automatically map
from an AMPL constraint name to a constraint number and from an AMPL variable name (of
currently up to 7 dimensions) to a variable number.

The main impact of SUCASA is that it enhances a user’s ability to customized PICO to
leverage application-specific features. We describe two applications that illustrate the impact
of this capability. Both use SUCASA to create cutting planes for separating exponential-
sized families of constraints. The first is a graph generation problem where the separation
algorithm is a customized C++ code. The second is a wireless sensor network management
problem where the separation algorithm is an integer program.

The remainder of the paper is organized as follows. In Section 2, we give a simple knap-
sack example to show the simple syntax of using AMPL symbols in a SUCASA-derived C++
class. In Section 3, we describe the steps SUCASA takes to build the customized solver and
describe how a user invokes SUCASA. Sections 5 and 6 summarize our example applications.
Finally Section 7 offers a few final remarks.

2. Generating a Solver. In this section, we give a simple example to illustrate how a
user can reference AMPL symbols within the C++ classes that SUCASA generates. To begin
the user must have either created or prepared both a *.mod and a *.dat file.

We use the AMPL model knapsack.mod:

param n ;
param c a p a c i t y ;
param v a l u e { 1 . . n } ;
param we ig h t { 1 . . n } ;
v a r y { 1 . . n } b i n a r y ;
maximize o b j : sum { i i n 1 . . n } v a l u e [i]∗ y [i] ;
s u b j e c t t o c o n s t r a i n t :

sum { i i n 1 . . n } we ig h t [i] ∗ y [i] <= c a p a c i t y ;

SUCASA SYMBOL: n c a p a c i t y v a l u e we ig h t

Suppose the user, given a fractional solution to this model, wants to add some cuts to
enforce additional constraints, and suppose that generating a new cut requires computing
the sum of the weights of the elements that are at least half-selected by the solution. If the
current fractional solution is in the vector called solution, the following code will compute
the required sum:

i n t sum some ;
f o r (i n t i = 0 ; i < n () ; i ++)

i f (s o l u t i o n [y (i)] > 0 . 5)
sum some += we ig h t (i) ;

The user can access the value of parameter n via the function call n(), and the value of
the ith weight via weight(i). The call y(i) returns the variable number of yi. SUCASA also
provides iterators for stepping through all valid indices of a variable or a parameter.

122 Customization of (Integer) Linear Programming Solvers with Automatic Symbol Integration

3. Customizing a Solver. PICO’s sucasa command coordinates the generation of a cus-
tomized PICO MILP solver. SUCASA invokes AMPL to generate a model instance and
data-related files needed at runtime. It then post-processes the AMPL information to gener-
ate customized C++ PICO software. The user then compiles the new solver. This section
involves accessing symbols, cutting planes, incumbent heuristics, and custom parameters.

In this section, we describe this process in more detail. With the version we describe
here, the user must rerun sucasa and recompile the few application-specific files to run the
model with a new data set. We have a different version that creates an executable that can
handle arbitrary data files at runtime, but that does not yet support parameter export; it only
makes constraints and variables available to the user for customization.

To begin the process, the user creates an AMPL model and data file. If the user created
a data file knapsack.dat corresponding to the knapsack.mod model, he can invoke the sucasa
command via:

s c r i p t s / s u c a s a −m −−a c r o=\$HOME / acro −p i c o −g knapsack . mod

This will first create the knapsack.map file which is used to store sets and values. If the
*.map file already exists then the user can skip to the next step. The next step utilizes sucasa
to run the command.

s u c a s a −k −− s o l v e r −o p t i o n s=”−−debug 10” knapsack . mod knapsack . d a t

This launches AMPL to generate an MPS file for the MILP problem and model information
that is used to customized PICO. In the simplest case, the model information is simply the row
and column labels of the MILP problem. However, a user often needs additional problem data
like the sets and parameters AMPL used to generate the MILP problem. A few key commands
should be noted:

• -h, --help - Display the help message and exit.
• -k, --keepfiles - Keep temporary files.
• --acro=ACRO - The directory of the acro installation that will be used to build the

customized PICO optimizer.
• -m, --generate-mapfile - Create the mapfile, even if it already exists.
• --solver-options=SOLVEROPTIONS - Options for the solver run by SUCASA.
• -g, --generate - Generate the customized IP source files.

There are other possible commands that can be using by using the -h, --help com-
mand.

The sucasa command interprets lines in an AMPL model file that contain SUCASA SYMBOL
as declarations of parameter data to be exported from AMPL.

For example, the model knapsack.mod contains the line:

SUCASA SYMBOL: n c a p a c i t y v a l u e we ig h t

to request that values for the symbols ‘n’, ‘capacity’, ‘value’, and ‘weight’ be avail-
able in the customized PICO solver. In addition, one could use the line:

SUCASA SYMBOL: ∗

to import everything. To date we have not needed the capability of exporting sets, as parame-
ters are almost always sufficient and there are ways to make set data available through extra,
artificial parameters. It should be noted that there is an issue with ambiguity in set supersets
because the parser may interpret sets as literals. There are efficiency advantages in the *.mod

N. L. Benavides, A. Carosi, W. E. Hart, V. J. Leung, and C. Phillips 123

file if a user defines a set as a set over integers.
In our example, SUCASA creates the following files in this step:
• knapsack.mps - The MPS file for this problem.
• knapsack.row - Labels for the constraints and objectives.
• knapsack.col - Labels for the variables.
• knapsack.val - Values for parameters explicitly exported by sucasa.

The sucasa command then executes COOPR’s command to process the AMPL output
files. This program parses the variable and constraint names to identify their index sets, and
infers relationships between these sets if the indices are symbolic. If index sets are integer,
it cannot in general tell if index sets are shared for all instances or just coincidental in the
current instance. So it assumes that all integer index sets are unique. At this point it will
search for a user generated knapsack.map file. If one does not exist it then generates the file
knapsack.map, which summarizes the model parameters, variables and constraints.

For reference, SUCASA uses an efficient indexing scheme to map tuples from param to
values, constraints to row numbers, and variable symbols to variable numbers.

In our example, the *.map file contains:

Se t0 (INT) ;
Se t1 (INT) ;
Se t2 (INT) ;
n ;
c a p a c i t y ;
v a l u e [Se t0] ;
we ig h t [Se t1] ;
c o n s t r a i n t ;
y [Se t2] ;

The value, weight and y logically use the same index set. The user can edit this map file to
indicate this. For example, they can declare Items (INT) and then specify value[Items].
Because sucasa does not regenerate the map file if it exists, this allows more efficient code
that shares a single index set.

4. Running a Solver. The sucasa code generates classes in the example info.h and
example info.cpp files that encapsulate the model data. Every parameter, constraint name,
and variable in the map file is exposed in the example::MILPSymbFunctions class. These
classes contain methods to support the flexible use of this data. For example, the following
data and methods are available for variable ‘y’:

/ /

/ / R e t u r n s t r u e i f t h e g i v e n t u p l e o r i n d e x i s v a l i d
/ /

y i s v a l i d (t u p l e)
y i s v a l i d (i n d e x)
/ /

/ / R e t u r n s t h e i n d e x of v a r i a b l e y f o r t h e s p e c i f i e d i n d e x
/ /

y (t u p l e)
y (i n d e x)
/ /

/ / R e t u r n s t h e s e t o f v a l i d i n d i c e s f o r B

124 Customization of (Integer) Linear Programming Solvers with Automatic Symbol Integration

/ /

y v a l i d ()

The methods for parameters like ‘weight’ are similar except that function weight(int i)
returns the value of the ith weight. Because by default, SUCASA invokes AMPL’s preproces-
sor, there may be “holes” in the index set the user specified in the model file. That is, AMPL
may have removed some variables in preprocessing because it inferred the variables’ values.
The various methods for checking for valid elements, or the iterators over the valid indices,
allow the user to avoid referring to non-existant variables.

The sucasa command generates code for derived PICO classes that integrate these model
data objects. Specifically, it generates the following PICO classes:

• Problem - The problem instance solved by the MILP solver
• MILP - Coordinates the branch-and-bound process
• MILPNode - Defines a node of the branch-and-bound tree; computes bounds and

applies incumbent heuristics
• parMILP - Coordinates the parallel branch-and-bound process
• parMILPNode - parallel equivalent of MILPNode

These classes inherit from corresponding PICO classes, as well as the MILPSymbFunctions
class. Further, instances of these classes share an instance of the underlying model data. Con-
sequently, the model data and methods described above are available throughout the derived
MILP solver. To summarize the MILPSymbFunctions class is an object of Symbinfo and
the PICO classes summarized above are objects of MILPSymbFunctions.

The sucasa command constructs a makefile that leverages the PICO makefiles to support
the construction of the derived MILP solver. It also provides a method for cleaning up files
that sucasa generates. After executing sucasa, the derived solver can be built with:

make

This generates an executable knapsack milp. The user runs this solver by calling

k n a p s a c k m i l p [PICO o p t i o n s] knapsack . mps

Since this is a PICO solver, it recognizes all of PICO’s options.

5. Application Example: Graph Generation. Our first example is a graph generation
problem, motivated by Li et al’s [12, 2, 7] model for the structure of some infrastructure
networks. Those who study link prediction, for example, would like to generate graphs with
such structure, or closely related.

The specific problem is as follows: given a number of nodes n and vector of vertex
degrees di (for i = 1 . . . n), construct a connected graph with the given set of vertex degrees
that maximizes the sum of the edge degree products, did j, over all selected edges ei j. Li et al
give a heuristic solution for this problem.

We use decision variables ci j that are 1 when ei j is selected and zero otherwise. The
integer program for this problem is straightforward except for the exponential number of
constraints required to enforce that the graph is connected. However, there exists a separa-
tion algorithm to enforce that the graph is connected. We compare a shell script solution
using AMPL, CPLEX, and a C program [11] implementing the separation algorithm with a
SUCASA-based solution.

In the scripted AMPL, CPLEX, and C program solution, we first use AMPL and CPLEX
to solve a base linear program with only the degree constraints. We then use a C program to
find the connected components, where we consider two nodes connected if the edge joining

N. L. Benavides, A. Carosi, W. E. Hart, V. J. Leung, and C. Phillips 125

them is sufficiently highly selected. We then add constraints as necessary to require a (frac-
tional) total of at least one edge leaving each connected component and a (fractional) total of
at least enough edges to create a spanning tree between all connected components. We iterate
until we (fractionally) have a single connected component.

We then use the Concorde [5] cut library to ensure that the global minimum cut is at least
one. We add constraints as necessary in this second phase of the separation algorithm. We
iterate through the combined two phases of the separation algorithm until the global minimum
cut is at least one.

At this point, we may still have fractional edges. In our initial scripted prototype, we
cannot use CPLEX’s branch and cut mechanism to find an optimal integer solution because
each linear programming relaxation requires the separation mechanism. We could potentially
do this if we wrote a C or C++ code to use CPLEX’s call back mechanisms and managed
variable mappings.

The SUCASA solution avoids the file I/O and cold start of CPLEX after the base solve.
The SUCASA solution is four times faster than the scripted solution. In addition to these
speed gains, the SUCASA solution is easier to implement and can implement branch and cut.

6. Application Example: Scheduling Data Collector Movements in Wireless Sensor
Networks. In the second application example, we consider a problem in managing wireless
sensor network using Basagni et. al.ś method [4]. Unattended wireless sensor networks mon-
itor for events of interest in military, environmental, industrial, and household settings. The
sensors are small, usually disposable, and static (i.e. they do not move). They function only
until their batteries run out of power. Sensors send packets with status or event informa-
tion to one or more sinks. Sinks are not energy constrained. They can move, compute, and
can communicate to a central data collection point. Sensors can only communicate within a
fixed tranmission radius. They relay packets through other sensors until the packets reach a
sensor that can communicate directly to a sink. Relaying packets requires energy. Because
nodes near the sink must relay packets from every sensor in the network, they use energy at
a greater rate than those more distant from the sink. Thus if the sinks did not move, nearby
sensors would die quickly, disconnecting the sink, while other sensors still had plenty of bat-
tery power. The problem, which we will not describe formally, is to schedule movements
of the sinks to balance energy consumption, maximizing network lifetime, which is the time
between network deployment and the death of the first sensor.

Basagni et. al. [4] solve a linear-programming relaxation of the scheduling problem. The
LP selects a set of configurations (placements for the sinks on a subset of legal sink locations)
and selects a time for each configuration to hold. But it does not handle movement between
configurations and other technical details. Basagni et. al. use the LP solution to find a feasible
solution that is always within 1.4% of optimal for the realistic test cases they have run. The
LP has a variable for each of the exponential number of possible configurations, however.
Therefore, they solve the dual, using separation. The separation algorithm is a p-median-
like integer program, which is tractable in practice for problem sizes consistent with current
wireless sensor networks.

Basagni et. al. solved this LP using a PERL script [6] and AMPL with CPLEX. The
PERL script driver calls AMPL iteratively, running the LP model and the IP separation model
on each iteration. It creates the LP and IP ampl model files at each step. It interprets the IP
solution, and, if there is a violated constraint, adds the new constraint to the LP for the next
round.

This system leads to a considerable waste of time. At each step AMPL rebuilds the LP
and IP matrices from scratch. CPLEX has to solve the LP from scratch each iteration even
though the PERL script only adds a single constraint to the previous LP problem. Since that

126 Customization of (Integer) Linear Programming Solvers with Automatic Symbol Integration

work, we have reimplemented the system in AMPL only. AMPL does not support general
data structures, and therefore cannot provide the full programming environment for sepa-
ration algorithms that SUCASA does, but for this example, AMPL’s looping mechanism is
sufficiently powerful. In fact, the AMPL-only (plus CPLEX) implementation was extremely
easy to write. Furthermore, since AMPL is aware of the iterations, it warm starts CPLEX on
each LP solve using the previous basis. However, AMPL still rebuilds the LP matrix at each
step.

Table 6 compares the PERL script with the AMPL-only solution for some test problems.
These problems had 400 sensors with a k×k grid of feasible sink locations. There are s sinks.
Each table entry shows the time in seconds and the number of iterations in parentheses. These
results are for a 64-bit machine with two Intel Xeon CPU at 3.60GHz and 8GB of RAM, linux
kernel 2.6.9-1.667smp and CPLEX version 10.0.0.

(k,s) PERL/AMPL AMPL
(16,2) 4401.57 (46) 4951.97 (47)
(16,3) 9407.67 (66) 8956.41 (66)
(16,4) 12120.1 (73) 11219.1 (73)

T 6.1
Solution time in seconds and number of iterations (in parentheses).

Although the AMPL-only solution is somewhat faster, a solution using SUCASA should
be faster still, since it keeps a solver environment open, allowing it’s own warm-starting
decisions, and there is no need to rebuild the LP matrix at each step.

7. Discussion. Our experience with application examples demonstrates that developing
applications with SUCASA can be quick and intuitive. Furthermore, these applications can
solve problems faster than using scripts because PICO makes incremental changes to a solver
environment that is always open. This avoids rebuilding matrices and allows the solver to
warm start on the next iteration.

The standard PICO release includes an example SUCASA application: scheduling jobs
on a single machine with precedence constraints. This example uses the derived classes to
implement an incumbent heuristic.

The code that SUCASA generates includes useful stubs and comments for adding in-
cumbent heuristics or separation algorithms.

Acknowledgements. We thank Jonathan Eckstein for his feedback on SUCASA and
for help extending PICO to support this capability. We thank Jon Berry for his help with
SUCASA support. We thank Randall Laviolette for suggesting the graph generation problem
and Robert Carr for discussions about the graph generation problem. Sandia is a multipro-
gram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United
States Department of Energy’s National Nuclear Security Administration under Contract DE-
AC04-94-AL85000.

REFERENCES

[1] AIMMS home page. http://www.aimms.com.
[2] D. L. A L. L, Diversity of graphs with highly variable connectitivity, Physical Review E, 75

(2007).
[3] AMPL home page. http://www.ampl.com/.
[4] S. B, A. C, C. P, C. A. P, Coordinated and controlled mobility of multiple sinks

for maximizing the lifetime of wireless sensor networks. Submitted.

N. L. Benavides, A. Carosi, W. E. Hart, V. J. Leung, and C. Phillips 127

[5] Concorde home page. http://www.tsp.gatech.edu/concorde.html.
[6] H. M. D, P. J. D, T. R. N, D. C. MP, Perl How to Program, Prentice Hall, Englewood

Cliffs, N.J., 2000.
[7] J. C. D, D. L. A, L. L, S. L, M. R, S. S, R. T, W. W, The

”robust yet fragile” nature of the internet, PNAS, 102 (2005), pp. 14497–14502.
[8] R. F, D. M. G, B. W. K, AMPL: A Modeling Language for Mathematical Programming,

2nd Ed., Brooks/Cole–Thomson Learning, Pacific Grove, CA, 2003.
[9] GAMS home page. http://www.gams.com.

[10] J. K, Modeling Languages in Mathematical Optimization, Kluwer Academic Publishers, 2004.
[11] B. W. K D. M. R, The C Programming Language, Prentice Hall, Englewood Cliffs, N.J.,

1978.
[12] L. L, D. A, W. W, J. D, A first-principles approach to understanding the internet’s

router-level topology, in Proc. Conference of the ACM Special Interest Group on Data Communication,
2004.

128 CSRI Summer Proceedings 2007

D. Ridzal and S.S. Collis 129

Architecture and Systems Software

Articles in this section discuss advances in high–performance computing architectures
and systems software that enhance performance of real–world scientific and engineering ap-
plications.

Reiss et al. address the challenges associated with the lack of scalability and reliability
in I/O systems on modern supercomputers. One proposed solution has been to dedicate com-
pute nodes as a staging I/O proxy, which acts as a large buffer and sends output during an
application’s compute phase. The authors present the design and implementation of a trans-
parent wrapper for the parallel netCDF library that provides this service. Martin et al. present
a detailed performance analysis of the SiCortex SC072 high–performance computing cluster.
SiCortex SC072 is a balanced cluster which makes use of low–power MIPS processors and
a custom interconnect in an effort to avoid many of the bottlenecks plaguing most modern
systems. The results of the study indicate that, albeit outpaced by modern commodity clus-
ters in terms of pure processing power per node, the SiCortex approach to high–performance
computing leads to consistent scalability and significantly greater performance per watt. La
Fratta and Rodrigues address the problem of intelligently utilizing on–chip cache resources
in future generations of CPUs, with the objective to enhance both computational capabili-
ties and memory access patterns. They present an unconventional approach of augmenting
each cache level with distributed co–processors, which are utilized by forming small groups
of computations. The approach is evaluated using an extension of the Structural Simulator
Toolkit (SST) on a set of important Sandia applications. Curry et al. discuss the performance
of a general Reed–Solomon encoding and decoding library that is suitable for use in RAID–
like disk drive systems that utilize GPUs. Reed–Solomon coding is a method for generating
arbitrary amounts of checksum information from original data via matrix–vector multiplica-
tion in finite fields. The authors generalize, broaden, and optimize a previously developed
Reed–Solomon coding library and report encouraging performance results.

D. Ridzal
S.S. Collis

December 11, 2008

130 CSRI Summer Proceedings 2007

CSRI Summer Proceedings 2008 131

IMPLEMENTATION AND EVALUATION OF A STAGING PROXY FOR
CHECKPOINT I/O

CHARLES A. REISS∗, JAY LOFSTEAD†, AND RON. A. OLDFIELD‡

Abstract. As supercomputers have increased in processing power and decreased in reliability, their I/O systems
are not scaling similarly. One proposed solution has been to dedicate compute nodes as a staging I/O proxy. These
nodes act as a large buffer for output and send output during applications’ compute phase without causing interfer-
ence. This report presents the design and implementation of a transparent wrapper for parallel netCDF that provides
this service. The wrapper’s performance was evaluated on the Cray XT3 Red Storm. Based on the observed per-
formance, we show that the wrapper should provide better overall performance for large checkpointing applications
even after taking into account computation that could otherwise be done with the staging nodes.

1. Introduction. As new supercomputers have more and more cores and thus more and
more processing power, reliability and I/O capabilities are not scaling similarly. Unfortu-
nately, traditional supercomputing applications rely on I/O capacities scaling as complexity
increases. The most common means of ensuring long-term progress is periodic checkpoint-
ing. But, as reliability decreases, more and more frequent checkpointing is required to obtain
maximum utilization. When the I/O system also does not scale according to compute power,
each checkpoint also takes longer. With increasing checkpoint overhead, the application only
runs marginally better with the extra cores.

Without substantially changing the applications themselves, one potential workaround
for the poor scaling of I/O is staging. Instead of communicating directly with the filesystem,
applications communicate with a staging proxy. The staging proxy can sit on an arbitrary
number of the plentiful compute nodes and be resized and adapted for particular application’s
needs. The proxy hides the overhead of the I/O system by buffering and consolidating the I/O
requests. Buffering allows I/O to be overlapped with the application’s computation phases,
achieving similar effects to asynchronous I/O when it would not otherwise be possible. If the
staging nodes are considered reliable enough, one can even stop viewing it as a proxy: instead
they can be a fast, in-memory filesystem that supplements the more permanent filesystems.

We developed a staging application, which is a wrapper around the parallel netCDF
library [8]. Our wrapper works with unmodified parallel netCDF applications by translating
their library calls into RPC calls for the staging servers. The staging servers then buffer the
data (if they have memory to do so) and perform the specified netCDF operations after the
application has finished its I/O phase.

We demonstrate that for sufficiently large applications, our approach will improve the
performance of unchanged applications which use parallel netCDF. The application size re-
quired is within what may be encountered on current supercomputers, and we anticipate that
this approach will become more applicable to future machines. Although the staging nodes
are unavailable for computation, the drastically decreased checkpoint times mean that appli-
cations should make more progress with the same overall number of nodes.

2. Design.

2.1. Platform Limitations. Our staging servers ran entirely on normal compute nodes
on Sandia’s Cray XT3, Red Storm, which use the lightweight operating system Catamount
[7]. This imposed some restrictions on our staging application: Catamount does not have
support for threading or multiprocessing and the only available internode communication

∗Georgia Institute of Technology, creiss@cc.gatech.edu
†Georgia Institute of Technology, lofstead@cc.gatech.edu
‡Sandia National Laboratories, raoldfi@sandia.gov

132 Evaluation of a staging proxy

mechanism is through Portals [2], which provides an RDMA interface, and through a Portals-
based MPI implementation.

We also limited ourselves to performing I/O using the parallel netCDF API, rather than
handling the file format ourselves. On Catamount, this meant we had no asynchronous write
support, so we had no way of overlapping writes with communication. The netCDF format
itself has some limitations; for example, datatypes large than a byte require byte swapping,
which uses extra buffer space and slows down the staging node’s I/O phase. (Since we per-
formed our tests with IOR [6], which only writes arrays of bytes, this was not necessary in
our measurements.)

2.2. Parallel netCDF Semantics. The parallel netCDF library’s API provides applica-
tions some guarantees that are not ideal for I/O performance. To obtain good I/O performance,
we relaxed guarantees which we felt were unlikely to be relied upon in any real application.

Primarily, we relaxed the implicit assumption that when a file is closed, it has been
written to non-volatile storage. We, however, provide a similar guarantee that, as long as
staging nodes and storage remain up for the time it takes to write the file, it will be written to
non-volatile storage. Even if the staging nodes are unreliable, at worst, the application will be
an additional checkpoint behind. Since shorter checkpoint times (somewhat non-intuitively)
decrease the optimal checkpoint interval, we would expect often to be recovering from a more
recent version in spite of the added delay.

Many collective parallel netCDF operations act as barriers. Even an application that does
not use collective reads or write could take advantage of these implicit barriers since opening,
closing, and creating variable definitions are collective in parallel netCDF. Coordinating most
operations is not useful for the staging nodes; it is more important that the staging nodes
evacuate the application nodes quickly, and filesystem-related coordination can be delayed
until the application’s compute phase. So, while we can easily make these operations a barrier
in our wrapper, doing so results in substantial performance degradation because the staging
nodes cannot keep their pipeline of requests full.

We do not, however, entirely desynchronize collective operations. Writing out a file still
acts as a barrier for all processes involved, which is all we believe that real applications are
likely to assume.

Commonly used parallel netCDF write functions assume that memory regions passed
to them cannot be accessed until after the call returns. Although there are many cases in
practice when they can as the application is passing arrays that will not be modified until the
next compute cycle begins, we cannot distinguish this situation from when a temporary buffer
is passed. We avoided allocating buffer space on application nodes assuming that applications
would not leave us with a substantial amount of memory. Parallel netCDF does not have any
explicit contract about how much memory it uses internally, but besides header information,
parallel netCDF buffer space does not remain allocated after a synchronous write call returns.
If we could relax these assumptions, we could provide implicit asynchronous I/O, removing
the overhead of waiting for staging nodes to finish fetching each datum before preparing or
sending new data.

2.3. Staging Node Placement. To obtain full performance in data transfers from ap-
plication nodes to staging nodes, the selection of staging nodes is important. The minimum
bisection bandwidth of Red Storm is on the order of terabytes per second, larger than the
interconnect-to-memory bandwidth of hundreds of nodes, and even the bandwidth of the
physical links is larger than the interconnect-to-memory bandwidth. Thus, one might expect
that the interconnect-to-memory bandwidth would determine the overall bandwidth we could
provide, and the interconnect bandwidth itself would be largely irrelevant. Unfortunately,
although there is plenty of overall interconnect bandwidth, the routing scheme is fairly static

C. Reiss, J. Lofstead, and R. Oldfield 133

and so cannot take into account changing communication patterns. When the routes for sev-
eral pairs of nodes that are transferring data intersect, these shared interconnects thus limit
the total bandwidth.

Figure 2.1 illustrates this problem. With the ratio between staging and application nodes
increased, bandwidth can decrease substantially as the number of staging nodes is increased.
We believe this results from network contention.

Naive allocations are much more susceptible: if one allocates the staging nodes and the
application nodes as separate job invocations, the job launcher, by default, tends to allocate
contiguous blocks of nodes as would be expected when intrajob communication speed is the
primary concern. But with such an allocation, it is inevitable that there will be many shared
links on paths between the application nodes and their corresponding staging nodes. Thus,
as seen in the figure, performance decreases to half the maximum bandwidth with only 32
staging nodes (288 nodes in total).

We, however, achieved more consistent performance by spreading out the staging nodes.
Using the MPI ranks of each node over the entire allocation, we assigned staging nodes to
every kth rank (with appropriate rounding, setting k to the number of staging nodes divided
by the total number of staging and application nodes). Since application nodes are assigned
to staging nodes in groups of neighboring rank, this should ensure that the distance between
application and their corresponding staging nodes is reasonable.

Even with this allocation policy, node placement was still responsible for most of the
variance in bandwidth between application and staging nodes. We tested this by allocating
segments of 600 compute nodes and choosing random 534 node suballocations from it, and
observed the performance of the every kth rank selection on these suballocations. We had
22 staging nodes, the number required to buffer 32 MiB each from 1024 cores. Although
performance of the each suballocation was consistent over time, we observed a great deal of
variance between performance of different suballocations. Figure 2.2 illustrates the results of
this test over 52 trials.

Running the same test with a single 534 node allocation yields very consistent perfor-
mance (less than 5% difference in observed bandwidths) even over hours. Thus, the most
variance observed in our tests was probably not caused by inconsistent interconnect perfor-
mance or by interference from other applications on the machine.

F. 2.1. Staging node input performance with default allocation versus random allocation of staging nodes.

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 1 10 100

RM
A

G
et

 B
an

dw
id

th
 (M

iB
/s

)

Number of staging nodes

8 application nodes:1 staging node scaling runs

Default allocation
Random allocation

134 Evaluation of a staging proxy

F. 2.2. CDFs of performance of random suballocations of larger allocations.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1500 1600 1700 1800 1900 2000 2100

Po
rti

on
 o

f r
un

s

Bandwidth per staging node (MiB/s)

CDF of staging node bandwidth of random suballocations (534 nodes chosen from 600)

CDF

3. Evaluation.

3.1. Platform Characteristics. We tested our staging library and made performance
predictions based on Red Storm, a Cray XT3 located at Sandia. At the time of testing, Red
Storm had 12960 dual-core compute nodes. The compute nodes are arranged in a regular
three-dimensional grid, connected with a hypertorus topology. Each node has an intercon-
nect with a custom Cray SeaStar networking chip and an dedicated PowerPC chip. The
interconnect is coupled to the processor using a HyperTransport link, which has a theoretical
(excluding wire protocol overhead) bandwidth of 2.8GB/s [3]. Each of the six links from
each node can support 2.5GB/s, after protocol overheads [1]. Low-level software access to
the interconnects is provided through the Portals library [2], which provides a connectionless
RDMA-based interface.

According to prior the maximum node-to-node unidirectional bandwidth through Portals
is around 2.1GB/s [3], but in microbenchmarks, we observed that total bandwidth when re-
ceiving from multiple nodes simultaneously can exceed 2.3GB/s. Because all communication
between compute nodes and service nodes takes place over these interconnects, our results
could include some interference from other jobs.

All experiments detailed in this article that wrote to disk used /scratch1 on Red Storm,
a Lustre [9] version 1.4 filesystem which had 160 OSTs (Object Storage Targets) distributed
over 80 OSSs (Object Storage Servers). The staging server’s writes were performed through
the real parallel netCDF library, which uses MPI-IO internally. The performance of writing
through parallel netCDF and writing directly with POSIX or MPI-IO in tests with IOR were
nearly identical on Red Storm. Based on past observed performance, the maximum I/O band-
width to this filesystem should be around 176MiB/s · 160 ≈ 28GiB/s [5], but values observed
in practice (except for carefully coordinated tests) are much lower.

We did not use MPI collective I/O for writes because our tests indicated that collective
I/O consistently performed worse or no better than independent I/O on this filesystem. Except
where otherwise noted, for all tests we set the stripe count of the directory where our file was
written to the maximum and wrote one shared file. The stripe size was kept at the default of
2 MiB.

All I/O was done synchronously, as the Red Storm’s MPI implementation does not sup-

C. Reiss, J. Lofstead, and R. Oldfield 135

port asynchronous I/O1. For staging I/O, as long as staging nodes had sufficient free memory,
we prevented the latency of synchronous I/O from interfering with transfers from the applica-
tion by delaying disk I/O until the application closed the file. Except when otherwise noted,
the staging nodes did, in fact, have enough memory to buffer the data.

Although some nodes on Red Storm have 3GiB of memory, we tested as if all staging
nodes had only 2GiB available. When running IOR [6] to gauge I/O performance to the
staging nodes, one instance of IOR ran on each of the two cores of each application node. The
staging nodes, however, always ran in single-core mode so that more memory was available
to them.

3.2. Staging to Storage Performance. From our tests, it appears our staging node’s I/O
phase was competitive in speed with the speed directly from IOR with a similar number of
clients, despite the different ordering and total I/O sizes. We found that Lustre generally gives
much poorer performance for smaller (1 MiB) writes compared to larger (16 MiB) ones in
our tests, even with large numbers of clients.

Although the bandwidth between staging nodes and storage was comparable to the direct
bandwidth directly from IOR, Lustre did not in our tests provide full performance until it
had on the order of 500 clients. When each application core writes 32 MiB, there are not
nearly enough staging nodes in use to saturate the filesystem. We believe that it should be
possible to achieve full performance with the number of nodes we used by carefully setting
Lustre settings and with better arrangement of compute and staging nodes relative to their
corresponding OSSs.

There is a great deal of variance in I/O performance to storage. Likely causes for this
variance include competition with other jobs and the placement of our jobs relative to the
OSSs. A more carefully designed test could allocate nodes in a manner that was aware of
the OSTs and thus obtain better and more reproducible performance. However, past large I/O
benchmarks on Red Storm that have controlled for these factors have observed considerable
variance, with differences of well over 10% between maximum and average I/O performance
[5].

3.3. Application to Staging Performance. The limiting factor in application to staging
node transfers is the I/O bandwidth of the staging nodes. Under optimal conditions, RDMA
fetches proceed at an aggregate average speed of 2200MiB/s, the maximum speed we have
seen for such transfers even in small-scale tests. This speed is only achieved by overlapping
at least two RDMA transfers. Under normal conditions, we measured the RDMA transfer
speed at 1800 or 1900 MiB/s. Other overheads, most likely the round-trip latency between
the server and the clients, can further reduce the effective bandwidth to 1600 to 1700 MiB/s,
but this is as low as we have consistently observed with reasonable node allocations.

The net effective I/O bandwidth is much higher than that of the regular I/O system: for
example, we observed effective bandwidth of more than 375GiB/s in a run with 249 staging
nodes. Effective bandwidth begins exceeding what can usually be obtained with the I/O
system directly with as few as 512 application cores writing 32 MiB each, a data size that the
storage servers should be able to cache completely.

4. Conclusions.

4.1. Modeling Efficiency. Staging is only worthwhile if the compute resources used
for staging would not be more productive as part of the application proper. Only when the

1MPI-IO’s asynchronous I/O functions are provided, but tests showed that they were apparently synchronous.
There is theoretically asynchronous I/O support in Catamount on Red Storm, for example using the Cray iwrite
function, but we did not test this.

136 Evaluation of a staging proxy

application is larger than the filesystem can easily handle and failures are relatively common,
faster checkpoints are worth more than those compute resources. An important question is at
what exactly size the benefits of the faster I/O outweigh the loss of the nodes.

To address this question, we need a model of how much work is accomplished in the
presence of checkpointing and failures. Parameters of this model are:

• BS , the bandwidth to each staging node
• BF , the bandwidth of the filesystem
• M1, the mean time to interrupt (MTTI) of a single node
• dS , the amount of data a staging node can buffer
• dA, the amount of data an application core will write
• C, the number of cores per node
• A, the total number of application nodes

For the parameters determined by the machine, we have low and high estimates for Red Storm
from our experimental results:

Parameter Low High
BS 1400MiB/s 1600MiB/s
BF 4GiB/s 25GiB/s
dS 1600MiB 1700MiB

Some useful derived quantities are:
• δ, the checkpoint time
• I, time after checkpoint completes before it is committed to disk
• τ, the checkpoint interval; optimal value τopt ≈

√
2δ(I + M + R) − δ (based on [4];

see 6)
• S , the number of staging nodes required
• M = M1/(A + S), the overall MTTI of the entire job (we assume node failures are

independent)
• dtot = CAdA, the total size of the checkpoint

4.2. Evaluating Efficiency. Daly’s derivation[4] of an approximation for the optimal
checkpoint interval is obtained by minimizing an estimate of an application’s time to comple-
tion that we will use here to estimate performance, modified to include a term for I. Under
this model, every τ-unit long compute phase requires on average

T = τ + δ +
(

1
2

(τ + δ) + R + I
)

e
τ+δ
M

units of wallclock time. The latter term is the estimate rework time, assuming failures are a
Poisson process.

We arbitrarily estimate that R = 2dtot/BF (since we know that that recovery requires
reading a checkpoint, we know that at least R > dtot/BF , the time it takes to write a checkpoint
to disk).

The other inputs we can compute. With staging, S = ddtot/dS e, δ = S · BS , and I =
dtot/BF . Without staging, δ = dtot/BF and S = I = 0.

For example, consider an application where dA = 32MiB and which takes one day of
computation to complete. Its wallclock time with checkpointing overhead will be (1 d)T/τ.
Figure 4.1 shows a scaling plot of its this wallclock time using our low estimates of Red
Storm I/O performance. Execution time with an appropriate number of staging nodes added
is easily better, but this is an unfair comparison: with staging, the application uses S/A ≈ 4%
more nodes, so we should adjust the staging wallclock time accordingly for comparision. The
adjusted staging times in the figure are thus about 4% more than unadjusted staging time.

C. Reiss, J. Lofstead, and R. Oldfield 137

F. 4.1. Scaling plot of a hypothetical application which needs 1 day of computation and writes 32 MiB per
core (using low estimates of Red Storm performance). Adjusted staging numbers account for the extra nodes devoted
to staging.

 24

 24.5

 25

 25.5

 26

 26.5

 27

 27.5

 28

 28.5

 100 1000 10000

W
al

lcl
oc

k
tim

e
(h

ou
rs

)

Number of nodes

Wallclock time with weak scaling

No staging
Staging

Staging (adjusted)

With this adjustment, there is an application size below which staging is not useful be-
cause of the work that could be done with the extra nodes. We call this point the crossover
point, and it determines when staging is or is not appropriate.

Using the adjustment for the number of nodes in use, we compute a quantity we call
efficiency, which is A

A+S ·
T
τ

. The efficiency is the portion of available compute time used
for computing the application’s result, so if an application did not have devote resources to
outputting and did not experience failures, its efficiency would be 100%. Our computation
of efficiency is motivated by an assumption that making small adjustments in the number
of nodes devoted to an application does not substantially change work performed per unit
compute time. Since most applications show slightly sublinear scaling at interesting sizes,
we probably overestimate the number of nodes required for staging to be worthwhile.

In this model, the failure of any staging or application node requires a full restart. But,
ideally, a failure of an application node would allow recovery from the staging nodes, avoid-
ing any problems with the time disk I/O takes and waiting for a deferred write to disk to
complete, and a failure of a staging node would allow recovery by restarting the staging
nodes separately in between checkpoints. The case where low-overhead recovery would not
be possible is when at least one staging node and one application node fail in close proximity.
If we assume that all failures are single node failures and that each node fails according to
a Poisson model, then such ‘double failures’ are relatively unlikely. In practice, however,
problems with interconnects and other shared resources often cause multiple nodes to fail
simultaneously.

The model also assumes that the data size per application node is fixed, regardless of the
number of staging nodes. It might be more reasonable to assume that the problem size of the
application should instead be determined by the total number of nodes. Nevertheless, staging
is still advantageous under these assumptions if the amount of data per application node is
determined by the total nodes allocated. Since this ‘strong scaling’ increases the total data
size by what should be a relatively small amount — the proportion of nodes devoted to staging
— the difference in the crossover point under these assumptions is small. A real application
would, of course, have limits on how it can distribute the work and non-I/O scaling issues
that would complicate this picture.

138 Evaluation of a staging proxy

4.3. Crossover Points. From actual measurements, when each application core must
write out 32 MiB in 1 MiB chunks, the crossover point lies somewhere between 6000 cores
and 10000 cores. Figure 4.2 shows estimated efficiencies in this case with and without staging
given our low and high parameters for our model in terms of the total number of nodes
(staging and application). The figure also shows the efficiency estimates based on values
of δ, I, A, and S we measured in actual runs. Staging runs for small numbers of nodes
are below our model’s estimates because not enough nodes are performing I/O to use the full
bandwidth of the filesystem. Observed performance to Lustre being well less than its potential
performance, using our high estimates of Red Storm’s performance puts the crossover point
near 16000 cores.

F. 4.2. Efficiency of a linearly scaling application for 32 megabyte writes in 1 megabyte transfers, shown
with efficiency values from measured I/O times. Staging performance is less than the model predicts for small runs
because there are not enough staging nodes to achieve reasonable I/O performance to Lustre. Sawtooth patterns in
estimates of staging performance for small runs are due to rounding when choosing the number of staging nodes to
allocate.

 90

 92

 94

 96

 98

 100

 1000 10000 100000

%
 n

od
e

us
ag

e

Cores

Efficiency

Control
Stage

Actual Control
Actual Staging

For larger write sizes, the crossover point occurs at a much higher number of nodes
as shown in figure 4.3. For example, if each application core writes 128 megabytes, we
predict the crossover point to be somewhere between 10000 and 25000 cores under the same
assumptions. This is since the portion of nodes that need to be devoted to staging that buffers
the write completely is approximately the same as the portion of memory that is written out.
Fortunately, staging I/O scales well enough that relatively little time beyond the fixed cost of
the lost nodes is lost, so we can expect staging to be practical for most I/O sizes.

4.4. Varying Checkpoint Intervals. With staging, the computed optimal interval be-
tween checkpoints can be very small. A small checkpointing time δ implies a small optimal
checkpoint interval, as can be seen from the formula

√
2δ(I + M + R) − δ. This may seem

non-intuitive, but it is natural that when doing a checkpoint is not a burden, one can gain more
from making them more often. However, these small checkpoint intervals may be difficult to
achieve in practice as the time spent in the compute cycle cannot be precisely adjusted. To
estimate the effects of this imprecision, we examined the estimated efficiency after varying
the checkpoint time away from the optimum.

In most cases, the optimal checkpoint interval is several minutes with staging, but an
order of magnitude larger without. Fortunately, for non-small data sizes, the benefit lost
by exceeding the checkpoint time is relatively small. Figure 4.4 shows how changing the

C. Reiss, J. Lofstead, and R. Oldfield 139

F. 4.3. Crossover points when each core writes different amounts.

 1000

 10000

 100000

 1 10 100

Br
ea

k
ev

en
 p

oi
nt

 (c
or

es
)

Amount written per application core (MiB)

Predicted crossover core count for staging versus write size per core

Low estimate
High estimate

checkpoint interval in the staging case affects the crossover point in some example cases.
With small data sizes not only is the optimal checkpoint interval exceptionally small to begin
with, but deviating from it has a more severe effect. With larger data sizes, the optimal
checkpoint interval is several times larger, determined by the output time to disk already and
relatively large deviations from it have relatively little effect.

For example, when each core writes 128 MiB with our model of Red Storm, we estimate
that though the optimal checkpoint interval is between 5 and 10 minutes, using an interval of
20 minutes increases the number of nodes required to benefit from staging by less than 40%.
With smaller data sizes, the optimal checkpoint times are smaller, close to 3 minutes for 32
MiB written per core. Unsurprisingly, the effect of increasing the checkpoint time is much
greater; in the 32 MiB per core case, the number of nodes required to benefit increases by
somewhere between 25% and 250% (depending mostly on how fast the normal filesystem is).

F. 4.4. Change in crossover point as the checkpoint interval for staging is changed. No data is provided at
the checkpoint intervals below the actual I/O time to the filesystem.

 10000

 100000

 0 600 1200 1800 2400 3000 3600 4200 4800 5400 6000

Cr
os

so
ve

r p
oi

nt
 (n

um
be

r o
f c

or
es

)

Time between checkpoints (seconds)

Crossover point (where staging and control performance are equal) versus checkpoint interval

32 MiB (low)
32 MiB (high)
128 MiB (low)

128 MiB (high)

140 Evaluation of a staging proxy

5. Future Issues.

5.1. Large Memory Nodes. Modeling the efficiency of staging can estimate the ex-
pected improvement of potential hardware improvements. To support staging, one obvious
hardware improvement is increasing the amount of memory per node, possibly only in se-
lected “jumbo” nodes. To test the effects of such an improvement, we performed scaling tests
with small memory (2GiB) nodes, which were configured to retrieve more data than they had
memory for, silently discarding the excess data (producing a corrupt file) rather than stalling
to write the data. These tests showed that staging nodes gave consistent I/O performance even
when their number of clients increases dramatically.

The availability of such ‘jumbo’ nodes would substantially increase the viability of stag-
ing. For example, we estimate that given a sufficient number of nodes with 8GiB of memory,
the break-even point when 128 MiB was written per core would not be between 10000 and
25000 cores but between 3000 and 8000 cores. Given that it may be easier and cheaper to
supply such jumbo nodes than to provide a traditional parallel filesystem with appropriately
scaled speed, large memory nodes scattered throughout a supercomputer may be an good way
for future supercomputers to scale their I/O systems.

5.2. Proxies for Caching. When staging nodes do not have enough memory to hold the
entire dataset, staging is theoretically still useful because it provides an effectively faster I/O
system. Tests done when staging nodes only had enough buffer space to buffer two-thirds
of the data show that this can provide better performance. These tests were small scale, run
with 512 cores feeding into 27 staging servers which were writing to a Lustre file limited to
8 stripes. These provided an effective I/O speed of around 3000 MiB/s instead of the actual
filesystem speed of 1000 MiB/s. As we expected, with memory constrained the actual speed
of the filesystem was the limiting factor and not the speed at which staging nodes can read.

Extrapolating and assuming linear scaling and 5 year/node MTTI, on full-scale runs, we
would expect this sort of I/O speedup to become worthwhile somewhere between 8 and 20
thousand application cores, but we did not get an opportunity to run experiments to demon-
strate scaling to these sizes.

5.3. Combining Writes and Asynchronous I/O. With our architecture, we could eas-
ily support asynchronous I/O from the staging servers to the filesystem if the underlying
MPI-IO supported it. We would expect asynchronous I/O would overcome the problem of
poor performance due to small writes as we would effectively always be writing as much as
possible. Portals on the XT3 also has good performance with simultaneous puts and gets, so
at least on the XT3, we may be overlap filesystem I/O with transfers to the servers, decreasing
the effective I/O time and interference with applications’ communication phases.

Even without asynchronous I/O support, we should be able to improve performance by
performing larger writes. Since with our current arrangement, each staging node is likely
to have data that is adjacent in the application’s conceptual space and thus in the resulting
file, they should be able to combine the application’s writes into a larger contiguous write.
Potentially, these writes could even be coordinated so the staging servers would spread the
load intelligently across the servers of the parallel filesystem.

5.4. Application Interference. One unanswered question about staging is how the stag-
ing I/O phase will interfere with the compute phase of the application. If the staging servers
are performing large transfers to the filesystem over the same network connections as the
application uses for internal communication, we can expect diminished performance where
these phases overlap. This is especially true as our placement of the staging nodes interleaves
them with application nodes. This effect is likely to be highly dependent on application com-

C. Reiss, J. Lofstead, and R. Oldfield 141

munication patterns and how much of the interconnect bandwidth is required to saturate the
I/O system.

6. Modified First-Order Approximation of Optimal Checkpoint Interval. We present
here the derivation of the formula

√
2δ(I + M + R)− δ presented in section 4.1. This is based

on Daly’s [4] derivation of the formula
√

2δ(M + R) − δ when the I/O occurred entirely syn-
chronously with the checkpoint.

Daly approximately minimizes

time worked = Tw(τ) = solve time + checkpoint time + rework time + restart time

≈ Ts + (
Ts

τ
− 1)δ +

[
1
2

(τ + δ) + R
]

Ts

τ

(
e
τ+δ
M − 1

)
where τ is the checkpoint interval, δ is the checkpoint time, M is the mean time to interrupt, R
is the recovery time, and Ts the total solve time. This assumes failures are a Poisson process.

To take into account the extra rework time from an incomplete I/O phase, we need to
change are computation of the rework time for each failure, which is 1

2 (τ + δ), representing
the amount of computation that must be repeated. Here, if we are interrupted t units of time
after a successful checkpoint, the lost time to be made up is τ+δ+t if t < I and t is I ≤ t < τ+δ.
Thus the average lost time is

1
τ + δ

[∫ I

0
(τ + δ + t)dt +

∫ τ+δ

I
tdt

]
= I +

1
2

[τ + δ]

Modifying Tw(τ) to include this yields:

Ts +

(Ts

τ
− 1

)
δ +

[
1
2

(τ + δ) + (I + R)
]

Ts

τ

(
e
τ+δ
M − 1

)
which is equivalent to adding the I/O phase time to the recovery time.

REFERENCES

[1] R. B, T. H, K. P, R. R, K. U, Implementation and performance of
Portals 3.3 on the Cray XT3, in IEEE International Conference on Cluster Computing, Boston, Mas-
sachusetts, September 2005.

[2] R. B, R. R, B. L, A. M, Portals 3.0: protocol building blocks for low overhead
communication, in 2002 Workshop on Communication Architecture for High-Performance Clusters, Fort
Lauderdale, Florida, April 2002, pp. 164–173.

[3] R. B, K. D. U, C. V, An evaluation of the impacts of network bandwidth and
dual-core processors on scalability, in International Supercomputing Conference, Dresden, Germany, June
2007.

[4] J. D, A model for predicting the optimum checkpoint interval for restart dumps, in Proceedings of the Interna-
tional Conference on Computational Science 2003 (ICCS 2003), Melbourne, Australia and St. Petersburg,
Russia, June 2003, pp. 724–733.

[5] J. H. L. III, L. W, R. K, S. K, J. L. T, B. R. K, Red Storm IO performance
analysis, in 2007 IEEE International Conference of Cluster Computing (Cluster 2007), Austin, Texas,
September 2007.

[6] IOR (interleaved or random) HPC benchmark. http://sourceforge.net/projects/ior-sio/.
[7] S. M. K R. B, Software architecture of the light weight kernel catamount, in Proceedings of

the 2005 Cray User Group Annual Technical Conference, Albuquerque, New Mexico, May 2005.
[8] J. L, W.-. L, A. C, R. R, R. T, W. G, R. L, A. S, B. G,

M. Z, Parallel netCDF: A High-Performance Scientific I/O Interface, Proceedings of the 2003
ACM/IEEE conference on Supercomputing, (2003).

[9] Lustre parallel filesystem. http://www.lustre.org/.

CSRI Summer Proceedings 2008 142

PERFORMANCE ANALYSIS OF THE SICORTEX SC072

BRIAN J. MARTIN†, ANDREW J. LEIKER‡, JAMES H. LAROS III§, AND DOUG W. DOERFLER¶

Abstract. The world of High Performance Computing (HPC) has seen a major shift towards commodity clusters
in the last 10 years. A new company, SiCortex, has set out to break this trend. They have created what they claim
to be a balanced cluster which makes use of low-power MIPS processors and a custom interconnect in an effort to
avoid many of the bottlenecks plaguing most modern clusters. In this paper, we reveal the results of preliminary
benchmarking of one of their systems, the SC072. First, we ran a collection of microbenchmarks to characterize the
performance of interprocessor communication. Next, we ran some real applications relevant to high performance
computing and compared performance and scalability to a typical commodity cluster. Lastly, we examine and
compare the performance per watt of the SiCortex system to a commodity cluster.

1. Introduction. Recently, the most popular high performance computing solution has
been the commodity cluster, which employs a large number of commodity processors linked
together with a commercially available interconnect. This trend has largely been fed by high
performance, low priced processors available for the personal computing market, as well
as the advancement of a variety of open source software. SiCortex [5], a relatively new
entrant in the HPC market, recently introduced a line of all-in-one clusters. They seek to
avoid the inefficiencies that arise from clustering a large number of commodity parts not
built for high performance computing. SiCortex claims to be the first company to engineer
a cluster “from the silicon up” to create a balanced system, balancing processor speed with
power consumption and communication speed in order to maximize application performance
per dollar, per watt, and per square foot [11]. We benchmarked the smallest system in the
lineup, the SC072(“Catapult”), a 72 processor machine with the form factor of a typical
desktop tower. Although the SC072 is not their largest cluster, it is representative of their
unique architecture and design philosophies. In this paper we analyze the performance of
the SC072 on a series of micro-benchmarks and compare the application performance and
scalability of the SC072 with a typical commodity cluster. To characterize the communication
performance of the interconnect, we ran a series of microbenchmarks, both from the Pallas
suite and Sandia. In addition, we employed several applications to reveal performance and
scalability of the SC072 and contrast between the SiCortex system and a commodity cluster.
We analyzed the data gathered from these applications in several different ways, including an
examination of the claims made by SiCortex regarding better performance per watt compared
to a typical commodity cluster. Section 2 outlines previous work done in this area. Section
3 discusses the architecture of the SC072 and what makes it unique as well as contrasts it
with a commodity cluster. A discussion of the microbenchmarking tools used takes place in
section 4, and a review of the applications used to measure performance and scalability is
covered in section 5. Results are presented and analyzed in sections 6 and 7, and a look at the
performance per watt takes place in section 8. Our conclusions based on the data collected
are presented in section 9.

2. Related Work. Preliminary analysis of the SiCortex systems has mainly been per-
formed by the engineers at SiCortex, due in part to their recent entrance into the HPC market.
Publications and technical summaries provided by SiCortex can be found in a series of white
papers [6]. In addition, analysis of the zero-copy remote direct memory access (RDMA)
implementation has been done by SiCortex through the use of HPCC RandomRing and Ping-

†Sandia National Laboratories, bjmart@sandia.gov
‡Sandia National Laboratories, ajleike@sandia.gov
§Sandia National Laboratories, jhlaros@sandia.gov
¶Sandia National Laboratories, dwdoerf@sandia.gov

B.J. Martin, A.J. Leiker, J.H. Laros, and D.W. Doerfler 143

pong benchmarks [13]. Other than the RDMA analysis done by SiCortex and a few published
white papers, analysis of the SiCortex systems has been largely non-existent. Therefore, this
paper strives to provide an accurate and unbiased performance analysis of the SiCortex sys-
tems.

T 2.1
Test Platform Summary

System SiCortex SC072 Generic Commodity Clus-
ter

Processor 500 MHz MIPS64 2.2 GHz AMD Opteron Pro-
cessor x86-64

Single Core Peak Floating
Point Rate

1 GFLOPS 4.4 GFLOPS

Interconnect Custom Myricom Myri10G
Interconnect Topology Degree-3 Kautz Graph Clos
Compiler PathScale version 3 Gnu Compiler Collection

3.4.3
Power Consumption per
Socket

15 Watts 85.3 Watts

MPI Implementation MPICH2 MPICH-MX

3. Architecture. The SiCortex SC072 resides in a desk-side case, plugs into a typical
100-120V electrical outlet, and draws less than 300W of power. On the inside, however, it
houses twelve compute nodes, each of which is a six-way symmetric multiprocessor, con-
taining six low-power 500 MHz 64-bit MIPS R© processor cores. Each core has a peak double
precision floating-point rate of 1GFLOPS, giving the entire system 72 GFLOPS of peak per-
formance [11]. To support these processors, the system houses 48GB of memory. One of
the defining features of the SiCortex line of clusters is their unique interconnect [12]. The
fabric topology in the SiCortex is a unique system based on a degree-3 directed Kautz graph
[10]. This Kautz topology means that the diameter of the network grows logarithmically with
the number of nodes even as the degree of the network remains fixed. The fabric links can
support large message bandwidth of 2GBytes/second, and since there are a total of six fabric
links per node, three exit links and three entrance links, bandwidth between nodes is up to
6Gbytes/second. The SC072 runs a custom build of Linux on each of it’s compute nodes,
placing it on equal footing with most commodity clusters in the availability of many open
source software solutions and expertise with the system. For message passing, the SiCor-
tex includes a custom message passing interface (MPI) implementation which is based on
MPICH2 and optimized for the architecture. RDMA protocol takes effect at message sizes
greater than 1024 bytes, and an MPI send-receive implementation is used for message trans-
fers below 1024 bytes. The RDMA is essentially implemented through the DMA Engine; it is
one of three interconnect components. SiCortex includes several compilers available for use
on their system, including the PathScale and GNU compiler suites, both containing C, C++
and FORTRAN compilers. All applications in this paper used the PathScale compiler suite,
as it is optimized to the SiCortex architecture. The resource management was taken care of
on the SC072 through use of the Simple Linux Utility for Resource Management (SLURM)
with the default production settings.

The cluster we used in comparison to the SiCortex is a typical commodity cluster which
uses 256 2.2 GHz AMD Opteron processors linked together by a Myrinet network in a Clos

144 SC072 Performance Analysis

topology. For all of the data gathered, this cluster was limited to 72 cores or less in order to
provide a core-to-core comparison between the two systems. The job management on this
cluster was handled by the Portable Batch System(PBS) in a production environment.

4. Microbenchmark Overview. In our analysis of the SiCortex system, several mi-
crobenchmarks were used to characterize SiCortex’s unique communication system. Of the
microbenchmarks, two were developed at Sandia National Laboratories and three were ob-
tained from the Pallas Microbenchmark tool suite. A brief description of each is presented
below.

4.1. Pallas Microbenchmarks. The Pallas microbenchmarks (version 2.2.1) are a suite
of tools capable of characterizing the message passing interconnect on high performance
computers. They include point-to-point, collective, and parallel transfer benchmarks. We uti-
lized the pingpong, allreduce, and sendrecv benchmarks as they are used extensively in San-
dia applications. Performance analysis for point-to-point communications was accomplished
with the pingpong microbenchmark, which measures the startup and throughput as a message
is sent between two processors. MPI Send() and MPI Recv(), blocking communication func-
tions, form the bulk of the pingpong microbenchmark. The allreduce microbenchmark is a
collective benchmark that measures the average time to reduce a vector with MPI Allreduce().
Lastly, the sendrecv tool was chosen as the parallel transfer benchmark. A chain like com-
munication pattern and MPI Sendrecv() are the underpinnings of the sendrecv tools analysis
capabilities. Its bidirectional bandwidth results characterize the interconnects bandwidth ca-
pabilities for communication intensive work.

4.2. Sandia Microbenchmarks. Analysis performed on the SiCortex communication
system with Sandia based microbenchmarks was done through the use of the Host Proces-
sor Overhead (HPO) analysis program [1] and a modified streaming analysis program; both
benchmarks were originally developed at Sandia. The HPO microbenchmark provides a pic-
ture of the total overhead and application availability on a single processor while commu-
nication is taking place. Overhead is the total processor time spent on MPI related tasks
during communication. Application availability, on the other hand, is the percentage of time
available for computational work during communication. As noted in citation [8], high ap-
plication availability and low overhead can remedy the negative affects of a high latency, low
bandwidth interconnect. MPI Isend() and MPI Irecv(), both non-blocking, allow communi-
cation and application work to overlap in the HPO analysis, thereby producing a realistic esti-
mate of MPI related overhead for the send and receive calls. The final microbenchmark used
for analysis was the streaming bidirectional microbenchmark. It is much like the sendrecv
benchmark; however, it characterizes the interconnect somewhat differently and gives a much
better estimate of bisection bandwidth. It utilizes the MPI Sendrecv() and floods the fabric
links with messages between processes for one second. Bisection bandwidth is then found
based upon the total number of bytes sent in that time period.

5. Application Overview. For performance analysis and scalability, three applications
were used to compare the SiCortex to a generic commodity cluster. They are described below.

5.1. HPCCG: Simple Conjugate Gradient Benchmark Code. The HPCCG micro-
application is a simple partial differential equation solver and preconditioned conjugate gra-
dient solver that solves a linear system on a beam-shaped domain. It generates a 27-point
finite difference matrix for a 3D chimney domain on an arbitrary number of processors. This
open source software was designed to be scalable up to thousands of processors, making it a
sound software choice for analyzing scalability of a system. This software was designed to
be a weak scaling code, meaning that, given the same input, the problem size doubles as the

B.J. Martin, A.J. Leiker, J.H. Laros, and D.W. Doerfler 145

number of processors doubles. Benchmarking data in this paper was taken with version 0.5
of HPCCG, using the reported total MFLOPS from the output of the program. HPCCG is
licensed under the GNU LGPL [2].

5.2. phdMesh. phdMesh is a micro-application designed to perform parallel geomet-
ric proximity search, dynamic load balancing, parallel synchronization, and other common
operations on parallel, heterogeneous and dynamic unstructured meshes. The data analyzed
was taken from the amount of time that the program spent performing the parallel geometric
search per step [4].

5.3. LAMMPS. LAMMPS is an open source molecular dynamics simulator available
under the GNU general public license. The May 21, 2008 release of LAMMPS is the version
being used for our analysis [3]. Within the LAMMPS package, atomic and molecular models
constitute the principal scientific tools; however, the package also has application bench-
marks incorporated. The application benchmarks originate from the models themselves. As
the models scale linearly, the benchmarks prove to be excellent scaling analysis tools for high
performance computers. Of the five application benchmarks available for performance anal-
ysis, we chose two, the Lennard Jones liquid benchmark and the Rhodospin Protein bench-
mark. The two benchmarks were chosen for the dissimilarity in simulation methods and
the difference in computational expense, as Rhodospin Protein is more computational and
communication intensive. Both benchmarks allow for weak and strong scaling. The com-
bination of benchmark and scaling type provide various pictures of the systems scalability,
such as characteristics of the system’s communication or computation scalability. Or more
importantly, the overall balance of the system’s scaling.

6. Microbenchmark Results. SiCortex microbenchmark results were attained through
the treatment of the SiCortex cluster as a non-production environment, allowing microbench-
marking to take place without outside influence. In addition, all core allocations were handled
by the SiCortex default implementation of SLURM, and all results are the average of multiple
message transmissions.

6.1. Pingpong Results. Latency and bandwidth data are presented for both on and off
node two processor core allocations. Both the on and off node results correlate with previous
work published by SiCortex. However, previous work done by SiCortex exhibited erratic
behavior at a message size of 64kB, see citation [13]; however, our results indicate SiCortex
improved 64kB characteristics. For a message size of 1024 bytes, figures 6.1(a) and 6.1(b)
demonstrate increased bandwidth performance and decreased latency. Performance changes
at 1024 bytes are common among other communication systems, but the MPI to RDMA pro-
tocol change at this stage warrants inquiry as to its effect on the SiCortex’s performance.
Up to a 512 byte message size, latency values are under five microseconds, which is con-
siderably good. Finally, on-node bandwidth performance is lower than off-node bandwidth
performance; this can be attributed to the overload of on-node system memory due to the
significant number of reads and writes, as noted in citation [13].

6.2. Sendrecv Results. The sendrecv benchmark was run both on and off node. Off-
node jobs ranged from two to twelve nodes, where on-node jobs ranged from two to six
cores. Figure 6.2(a) shows the results obtained from the two and twelve off-node jobs. Other
node allocation results fall somewhere in-between these two lines. For all off-node allocation
sizes, the distribution of messages across multiple fabric-links, rather than one, brought about
an increase in performance at a message size greater than 64kB. Boosts in performance at
this stage can be directly attributed to MPI protocol change; messages greater than 64kB are
spread across fabric links in partitions of 64kB, while messages 64 kB and smaller are passed

146 SC072 Performance Analysis

 0

 200

 400

 600

 800

 1000

 1200

 64 256 1024 4096 16384 65536 262144 1.04858e+06

B
an

dw
id

th
 (

M
B

yt
es

/s
ec

)

Message Size (Bytes)

Pingpong Bandwidth
(Unidirectional Bandwidth)

Off-Node
On-Node

(a) Bandwidth

 0

 5

 10

 15

 20

 25

 4 16 64 256 1024 4096

T
im

e
(u

se
c)

Message Size (Bytes)

Pingpong Latency

Off-Node
On-Node

(b) Latency

F. 6.1. Pingpong Microbenchmark Results

on one fabric-link [13]. Interestingly, achievement of maximum bidirectional bandwidth for
off-node jobs could only be obtained with message sizes greater than 4 MB. Lastly, figure
6.2(b) reveals an increase in the number of cores for an on-node job produces a predictable
reduction in bidirectional bandwidth.

 0

 500

 1000

 1500

 2000

 2500

 3000

1024 4096 1.638e+04 6.554e+04 2.621e+05 1.049e+06 4.194e+06 1.678e+07

B
an

dw
id

th
 (

M
B

yt
es

/s
ec

)

Message Size (Bytes)

Sendrecv Microbenchmark
(Off-Node Bidirectional Bandwidth)

Off-Node (2 Nodes)
Off-Node (12 Nodes)

(a) Off-Node Performance

 0

 100

 200

 300

 400

 500

 600

 700

1024 4096 1.638e+04 6.554e+04 2.621e+05 1.049e+06 4.194e+06

B
an

dw
id

th
 (

M
B

yt
es

/s
ec

)

Message Size (Bytes)

Sendrecv Microbenchmark
(On-Node Bidirectional Bandwidth)

On-Node (2 Cores)
On-Node (4 Cores)
On-Node (6 Cores)

(b) On-Node Performance

F. 6.2. Sendrecv Microbenchmark Results

6.3. Allreduce Results. Allreduce results are presented for power-of-two core alloca-
tions up to 64 cores, along with a 40 core job. Power-of-two core allocations exhibited ex-
cellent performance, while non-power-of-two core allocations did not. For example, the 40
core allocation performed 17000 microseconds slower than a 64 core allocation at a vector
reduction size of 16 MBytes. The prime factor for this deviation is the inherent dependence
of collective communication algorithms on power-of-two allocations. Consequently, core
allocation size plays a key role in performance and a smaller job size doesn’t necessarily sig-
nify optimum timings, as the 40 core allocation demonstrates. Figure 6.3 demonstrates the
power-of-two dependence for collective communications on the Sicortex interconnect. Fi-
nally, increased performance with greater core allocations indicates the SiCortex’s scalability
for communication intensive programs.

B.J. Martin, A.J. Leiker, J.H. Laros, and D.W. Doerfler 147

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 0 2e+06 4e+06 6e+06 8e+06 1e+07

T
im

e
(u

se
c)

Message Size (Bytes)

Allreduce Microbenchmark

2 Processors
4 Processors
8 Processors

16 Processors
32 Processors
40 Processors
64 Processors

F. 6.3. Allreduce Microbenchmark Results

6.4. Host Processor Overhead. Overhead and application availability results were ob-
tained for both an MPI Send and Receive function calls. Overhead data shown in figure
6.4(a), for both function calls, behaves linearly. In comparison to other systems, overhead
performance on the Sicortex system is marginal at best [9]. Application availability for
MPI Isend in figure 6.4(b) exhibits erratic behavior, including a plunge at 1024 Bytes and
a peak availability, 94.4%, at 512 KBytes. The unpredictable nature of the MPI Isend ap-
plication availability induced questions regarding the validity of the results; however, our
analysis was performed multiple times and deviations were so small that results proved to be
valid. Furthermore, a dependence on the RDMA protocol change is present at 1024 Bytes. In
contrast to MPI Isend, application availability for MPI Irecv is unfavorable for all message
sizes. Overall, high overhead and low application availability are common for message trans-
fers greater than 1 MB, but performance yields below 1 MB are generally only good for the
MPI Isend function.

6.5. Bisection Bandwidth. The bisection bandwidth microbenchmark shown in figure
6.5 performed similarly to the Pallas sendrecv microbenchmark. As expected, the bisection
bandwidth microbenchmark obtained a greater peak bidirectional bandwidth, a consistent
2.95 Gbytes to a sendrecv bandwidth of 2.86 GBytes. These bandwidth values place the in-
terconnects bidirectional bandwidth capabilities under 3 GBytes, which is noteworthy. Lastly,
maximum bandwidth was only obtained at message sizes greater than 4 MBytes, which also
occurred in the sendrecv program; this tendency to not obtain high bandwidth until extremely
large message sizes is not common among other interconnects.

7. Application Results. All applications presented in this section were tested in condi-
tions consistent with a production environment. All applications were compiled with a high
level of optimization consistent on both of the two platforms presented. All processor to MPI
task core allocations were done using SLURM on the SiCortex system, and PBS on the x86
cluster.

148 SC072 Performance Analysis

 0

 500

 1000

 1500

 2000

 2500

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06 3.5e+06 4e+06 4.5e+06

T
im

e
(u

se
c)

Message Size (byte)

Overhead

MPI_Irecv
MPI_Isend

(a) Overhead

 0

 20

 40

 60

 80

 100

 1 32 1024 32768 1.04858e+06

%
 A

va
ila

bl
e

Message Size (Bytes)

Application Availability

MPI_Isend
MPI_IRecv

(b) Application Availability

F. 6.4. Host Processor Overhead Microbenchmark Results

 0

 500

 1000

 1500

 2000

 2500

 3000

1024 4096 1.638e+04 6.554e+04 2.621e+05 1.049e+06 4.194e+06 1.678e+07

B
an

dw
id

th
 (

M
B

yt
es

/s
ec

)

Message Size (Bytes)

Bisection Bandwidth

12 Nodes
2 Nodes

F. 6.5. Bisection Bandwidth Microbenchmark Results

7.1. HPCCG Results. A weak scaling study was accomplished using HPCCG. A prob-
lem size of 64 x 64 x 64 elements for each core was used. For each data point HPCCG was
executed three times, and the results were averaged and plotted. The error bars on the plots
represent the high and low point. Note the error bars are barely visible on the charts, showing
consistency in the results.

Figure 7.1(a) shows how the clusters performed on HPCCG. It is clear that as far as
performance goes, the Opteron cluster outperforms the SiCortex machine due to the large
difference in processor speed. However, as we can see in figure 7.1(a), the SiCortex shows
better scalability up to 72 cores, maintaining over 95% efficiency, whereas the Opteron cluster
falls to 88% efficiency. It appears the balanced approach taken by SiCortex helps it maintain
performance efficiency up to full capacity for HPCCG.

B.J. Martin, A.J. Leiker, J.H. Laros, and D.W. Doerfler 149

 0

 5000

 10000

 15000

 20000

 25000

 1 2 4 8 16 32 64 128

P
er

fo
rm

an
ce

 (
M

F
LO

P
S

)

Number of Processors

HPCCG Weak Scaling on SiCortex vs. x86_64 cluster

x86_64 Cluster
SiCortex

(a) Raw Data

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4 8 16 32 64 128

P
er

fo
rm

an
ce

 E
ffi

ci
en

cy

Number of Processors

HPCCG Weak Scaling on SiCortex vs. x86_64 cluster

x86_64 Cluster
SiCortex

(b) Normalized Data

F. 7.1. HPCCG Weak Scaling

7.2. phdMesh Results. For phdMesh, both weak and strong scaling studies were ac-
complished. The data gathered for analysis comes from the amount of time performing a
parallel geometric search per step. For strong scaling, a 4x8x4 mesh of 128 gears was used.
Weak scaling was done with 2 gears per core arranged in an appropriate 3D mesh. For each
data point, phdMesh was run three times and the average was plotted, with the high and low
showing up as error bars on the plot. Again, the error bars are barely visible on the plot,
showing consistent results.

In strong scaling, as we can see in Fig. 7.2(a), the x86 cluster completed the task signif-
icantly faster due to it’s greater per-core performance. Unlike HPCCG, though, the scaling
was almost identical on the Opteron cluster as the SiCortex system. This can be seen in
Fig. 7.2(b)(the plots are almost identical). Note that in Fig. 7.2(b), the graph is normalized
so for each of the systems ’1’ represents the amount of time one core took searching, and all
other times are relative.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 1 2 4 8 16 32 64

T
im

e
S

ea
rc

hi
ng

 p
er

 S
te

p
(s

ec
on

ds
)

Number of Processors

Time Searching per Step phdMesh with 128 Gears

x86_64 Cluster
SiCortex

(a) Raw Data

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4 8 16 32 64

N
or

m
al

iz
ed

 T
im

e
S

ea
rc

hi
ng

 p
er

 S
te

p

Number of Processors

Time Searching per Step phdMesh with 128 Gears

x86_64 Cluster
SiCortex

(b) Normalized Data

F. 7.2. phdMesh Strong Scaling

Similar results to those seen in the strong scaling study are seen in the weak scaling
study. The Opteron cluster performs better than the SiCortex in general, simply because
of the difference in raw computational ability per processor. Again, the scaling of the two

150 SC072 Performance Analysis

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 1 2 4 8 16 32 64

T
im

e
S

ea
rc

hi
ng

/S
te

p
(s

ec
on

ds
)

Number of Processors

Time Searching per step for phdMesh With 2 Gears Per Processor

x86_64 Cluster
SiCortex

(a) Raw Data

 0

 1

 2

 3

 4

 5

 6

 1 2 4 8 16 32 64

T
im

e
S

ea
rc

hi
ng

/S
te

p
C

om
pa

re
d

to
 S

in
gl

e
P

ro
ce

ss
or

Number of Processors

Normalized Time Searching per step for phdMesh With 2 Gears Per Processor

x86_64 Cluster
SiCortex

(b) Normalized Data

F. 7.3. phdMesh Weak Scaling

systems are nearly identical, as seen in Figure 7.3(b).
On phdMesh, unlike HPCCG, we see almost identical scalability between the x86 cluster

and the SiCortex cluster up to 64 cores. Both systems scale fairly well and consistently up to
64 cores with phdMesh.

7.3. LAMMPS Results. Strong and Weak Scaling results are presented for the two
LAMMPS benchmarks chosen, Lennard Jones and Rhodospin Protein. Three runs were uti-
lized on both clusters in all LAMMPS evaluations; the final result is the normalization of the
minimum time obtained for each run at each core allocation size, with normalization based
on single core run times. Power-of-two core allocations up to 64 processors were selected as
the job sizes.

 0

 100

 200

 300

 400

 500

 600

 700

 1 2 4 8 16 32 64

T
im

e
(s

ec
.)

Number of Processors

Lennard Jones Strong Scaling
(Raw)

Sicortex
x86_64

(a) Raw Data

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1 2 4 8 16 32 64

P
ar

al
le

l E
ffi

ci
en

cy

Number of Processors

Lennard Jones Strong Scaling
(Normalized)

Sicortex
x86_64

(b) Normalized Data

F. 7.4. Lennard Jones Strong Scaling

Problem size was set at 32000 atoms for Rhodospin Protein strong scaling. The same
problem size was originally used for Lennard Jones strong scaling analysis; however, this
problem size proved to be too small a problem for the Linux cluster which demonstrated poor
and uncharacteristic performance. To combat the problem, a problem size of 4194304 atoms
was implemented for LJ, “Lennard Jones”, strong scaling on both clusters. Figure 7.4(b)

B.J. Martin, A.J. Leiker, J.H. Laros, and D.W. Doerfler 151

 0

 200

 400

 600

 800

 1000

 1200

 1 2 4 8 16 32 64

T
im

e
(s

ec
.)

Number of Processors

Rhodospin Protein Strong Scaling
(Raw)

Sicortex
x86_64

(a) Raw Data

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1 2 4 8 16 32 64

P
ar

al
le

l E
ffi

ci
en

cy

Number of Processors

Rhodospin Protein Strong Scaling
(Normalized)

Sicortex
x86_64

(b) Normalized Data

F. 7.5. Rhodospin Protein Strong Scaling

 0

 10

 20

 30

 40

 50

 60

 1 2 4 8 16 32 64

T
im

e
(s

ec
.)

Number of Processors

Lennard Jones Weak Scaling
(Raw)

Sicortex
x86_64

(a) Raw Data

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1 2 4 8 16 32 64

P
ar

al
le

l E
ffi

ci
en

cy

Number of Processors

Lennard Jones Weak Scaling
(Normalized)

Sicortex
x86_64

(b) Normalized Data

F. 7.6. Lennard Jones Weak Scaling

demonstrates the SiCortex’s greater scalability versus those of a generic Linux cluster for
LJ strong scaling, a non-computationally intensive benchmark. Correspondingly, the com-
putationally intensive Rhodo, ”Rhodospin Protein”, strong scaling favored the faster generic
Linux cluster for small core allocations; however, scaling performance on the generic clus-
ter begins to fall as core allocations grow larger, which is shown in figure 7.5(b). Not to our
amazement, the SiCortex scaled better than the generic Linux cluster for non-computationally
intensive weak scaling (LJ microbenchmark) and the generic Linux cluster demonstrated
good scaling for the computationally intensive weak scaling (Rhodo microbenchmark), see
figures 7.6(b), 7.7(b). Weak scaling, in this instance, was performed by increasing the prob-
lem size proportionally to the number of processors allocated. Although the generic cluster
clock times are consistently lower than the SiCortex for weak scaling, the SiCortex nearly
catches the generic cluster at larger allocation sizes for strong scaling. Combined, the weak
and strong scaling results demonstrate a tendency for the SiCortex to scale better for less
computationally intensive programs.

8. Performance per Watt. The motivation behind the use of the underpowered MIPS64
processors found in SiCortex systems is the fact that they take a low amount of power to run

152 SC072 Performance Analysis

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1 2 4 8 16 32 64

T
im

e
(s

ec
.)

Number of Processors

Rhodospin Protein Weak Scaling
(Raw)

Sicortex
x86_64

(a) Raw Data

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1 2 4 8 16 32 64

P
ar

al
le

l E
ffi

ci
en

cy

Number of Processors

Rhodospin Protein Weak Scaling
(Normalized)

Sicortex
x86_64

(b) Normalized Data

F. 7.7. Rhodospin Protein Weak Scaling

and provide a very high performance to watt ratio. Each processor in a SiCortex system con-
sumes less than one watt, and each six-processor node, which includes memory and other
components for those six processors, consumes less than 15 watts. In comparison, the com-
modity cluster’s Opteron core used in this paper requires 85.3 Watts. Peak performance per
watt on SiCortex systems is 322 MFLOPS per watt, an impressive number. In comparison,
the average performance per watt of a system on the July 2008 version of the top500 list is
122 MFLOPS per watt [7].

As the performance per watt data for the x86 cluster was unavailable, the data presented
here is based on the wattage of a single socket and the performance of the 4 applications
presented in section 7. Wattage for the x86 cluster socket encompasses the NIC, memory (4
DIMMS), and the Opteron processor. The NIC and memory power contributions are esti-
mates based upon previous work done by one of the authors; altogether, the generic cluster
socket consumes approximately 115 watts. For the SiCortex, one socket power consump-
tion is 15 watts, which is the equivalent of one node. Weak and strong scaling 64 core runs
were used for our analysis. With 64 core allocations, the x86 cluster used 64 sockets and the
SiCortex used 11 sockets. Considering power analysis results, it is quite apparent the energy
consumption for the SiCortex system is low compared to the x86 cluster. It should also be
noted that the SiCortex run time for equivalent core allocations was much higher. This would
normally raise a dilemma as to whether or not the decreased power consumption is worth the
increase in run time; however, the core allocation size on the SiCortex can be raised to levels
that compete with lower allocation sizes on generic systems and still consume less power.

9. Conclusions. In order for SiCortex to be competitive in the HPC using the less com-
putationally powerful MIPS processors, they need to show that the amount of cores needed
to make up for computational ability in a large system will not cause a steep drop-off in
performance. The results gathered largely reflect the claims that the system scales well to
a reasonable number of processors. The microbenchmarks show that the communication
system is capable of low-latency, high-bandwidth data transfer on par with many popular
commercial interconnects. This interconnect capability coupled with the slower clock rate of
the MIPS processors provide more balance than is typically seen in a commodity cluster, pre-
venting many of the communication bottlenecks prevalent in the world of high performance
computing. The application benchmarks show us that the system is consistently scalable to
a reasonable number of nodes on all applications tested. As a result, more of the advertised

B.J. Martin, A.J. Leiker, J.H. Laros, and D.W. Doerfler 153

 10

 100

 1000

 10000

 100000

Lennard JonesRhodospin ProteinphdMesh

R
un

tim
e

E
ne

rg
y

C
on

su
m

pt
io

n
(J

ou
le

)

Micro-Application

Strong Scaling Power Analysis
(64 Cores)

x86_64
SiCortex

(a) Strong Scaling Power Analysis

 10

 100

 1000

 10000

 100000

 1e+06

Lennard JonesRhodospin ProteinphdMeshHPCCG

R
un

tim
e

E
ne

rg
y

C
on

su
m

pt
io

n
(J

ou
le

)

Micro-Application

Weak Scaling Power Analysis
(64 Cores)

x86_64
SiCortex

(b) Weak Scaling Power Analysis

F. 8.1. x86 64-SiCortex Energy Consumption Comparison

performance will be used at a high number of nodes. This was reflected in the fact that for all
of the applications which analysis was performed on, performance efficiency per core never
dipped below 87%. We compared these performance numbers to those of a typical com-
modity cluster in production, and we saw some advantages in scalability for the SiCortex
system. The total performance of the commodity cluster’s high-powered Opterons, however,
outpaced the slower MIPS processors in the SiCortex. In some applications the commodity
cluster showed the same or greater performance efficiency at a high number of processors
than the SiCortex, but the SiCortex showed consistent scalability across all applications. The
performance efficiency of the commodity cluster dropped as low as 51% on an application
benchmarking study. In terms of performance per watt, we saw a huge advantage for the
SiCortex, a big concern recently in the world of HPC due to operating costs and environmen-
tal impacts. In terms of pure processing power per node, the SiCortex MIPS64 nodes do not
compete with today’s modern consumer processors. However, our results demonstrate that
their more balanced approach to HPC leads to consistent scalability and greater performance
per watt than a typical commodity cluster.

10. Acknowledgements. We would like to express our gratitude to the Computer Sci-
ence Research Institute (CSRI), the Student Internship Program (SIP), and our manager James
Ang. In addition, we greatly appreciate the engineers at SiCortex for their help in preparing
the SC072 for analysis.

REFERENCES

[1] Host processor overhead (hpo). Available http://www.cs.sandia.gov/smb/overhead.html.
[2] Hpccg. Available http://software.sandia.gov/mantevo/download.html.
[3] Lammps molecular dynamics simulator. Available http://www.lammps.sandia.gov.
[4] phdmesh. Available http://www.cs.sandia.gov/ maherou/.
[5] Sicortex website. Available http://www.sicortex.com.
[6] Sicortex whitepapers. Available http://www.sicortex.com/products/white papers.
[7] Top 500 computer sites. Available http://www.top500.org.
[8] D. D, An analsysis of the pathscale inc. infiniband host channel adapter, infinipath, Tech. Rep.

SAND2005-5199, Sandia National Laboratories, August 2005.
[9] D. D R. B, Measuring mpi send and receive overhead and application availability in

high performance network interfaces, in EuroPVM/MPI, 2006.
[10] W. K, “bounds on directed (d,k) graphs,” theory of cellular logic networks and machines, Tech. Rep.

AFCRL-68-0668, Air Force Cambridge Research Laboratory, 1968. pp. 20-28.

154 SC072 Performance Analysis

[11] M. R, L. S, J. L, D. G, Sicortex technical summary, April 2008. Available
http://www.sicortex.com/whitepapers/sicortex-tech summary.pdf.

[12] L. S D. G, A new generation of cluster interconnect, April 2008. Available
http://www.sicortex.com/whitepapers/sicortex-cluster interconnect.pdf.

[13] L. S, D. G, J. L, P. W, Rdma in the sicortex cluster systems, in EuroPVM/MPI,
2007.

CSRI Summer Proceedings 2008 155

INSTRUCTING THE MEMORY HIERARCHY WITH IN-CACHE
COMPUTATIONS

PATRICK A. LA FRATTA∗ AND ARUN F. RODRIGUES†

Abstract. As technology advances, processing resources continue to increase in number and speed. However,
memory speed continues to limit the utilization of these processing resources, especially for scientific applications
that access off-chip data with relatively high frequency. On-chip cache sizes rise with new processor generations,
and the intelligent use of these cache resources to mitigate slow off-chip accesses will have a direct impact on overall
performance. This work enhances the ability of conventional cache hierarchies by augmenting each cache level
with simple cores, called Local Cache Processors next to the cache lines. We define In-Cache Computations for
utilizing these processors and present methods for forming them. Simulation results from a suite of eight scientific
applications run at Sandia labs show that In-Cache Computations can offer significant performance improvements
over a processor backed by a conventional cache hierarchy.

1. Introduction. The power and performance of the memory hierarchy are key factors
in the design of computing systems. Efficient utilization of limited memory bandwidth is
necessary for power efficiency and high utilization of compute resources. To avoid waste-
ful memory transfers, architectures must offer options for intelligently using available cache
resources.

A large amount of research in prefetching [7, 21, 6, 1], cache partitioning [2, 15], ad-
vanced insertion policies [3, 14], miss-handling architectures [20, 5], and other areas [11, 10,
9] has addressed the problem of how to use cache resources intelligently. This work considers
an unconventional system design which augments a conventional processing node by embed-
ding simple cores, called Local Cache Processors (LCPs) throughout the memory hierarchy.
The objective of such a design is to efficiently utilize these additional processing resources
to exceed both the computational and caching capabilities of the conventional system. To
do this requires the formation of small computations, which we term in-cache computations
(ICCs), for execution on the LCPs. The process for forming ICCs must take into account not
only the problem of data placement as in conventional cache hierarchies, but also the related
problem of computational partitioning. This work addresses the problem by presenting two
methods for ICC formation, and then evaluating their performance.

The second section offers an overview of the idea of ICCs and baseline architectural
extensions. The third section presents our methodology for designing and evaluating ICC
formation processes. The fourth section gives the design details of two ICC formation pro-
cesses, and section 5 presents experimental results. The final section draws conclusions from
these results.

2. An Overview of In-Cache Computations. Previous studies have considered the ap-
proach of augmenting a conventional processor with compute logic in either the memory
controllers [4] or next to memory macros [19] using embedded DRAM technology [8]. An
example of the latter is the concept of Light-Weight Processors (LWPs) [12], which reside in
main memory, offering both parallelism and a high bandwidth memory interface to mitigate
high power and performance costs of memory accesses. This work extends this approach by
presenting Local Cache Processors (LCPs), which are simple processors embedded in the
caches of conventional cores. One or more conventional cores make up the Heavy-Weight
Processor (HWP), while the LWPs and LCPs together are both types of Distributed Co-
Processors (DCPs). Figure 2.1 shows an example of this type of system.

∗University of Notre Dame, plafratt@nd.edu
†Sandia National Laboratories, afrodri@sandia.gov

156 In-Cache Computations

F. 2.1. A Multicore Processor Backed by a DCP-Enhanced Memory Hierarchy. The HWP contains a set of
cores with extensions for issuing computations to the LCPs embedded in the memory hierarchy. LWPs may also be
embedded into main memory, as shown in the figure.

An In-Cache Computation (ICC) that executes on an LCP is a computational unit that
uses data in memory and is formed from a few instructions at the HWP. There are two primary
objectives to ICC execution. The first is to increase parallelism, both system-wide and at the
HWP, by offloading computations from the HWP to the DCPs. The second is to improve
memory performance by reducing traffic in the memory hierarchy with better data placement.

Recent work has illustrated key characteristics of scientific applications that differ from
those of benchmarks commonly used to evaluate microprocessor designs [13, 18, 16]. The
design of architectures to run these scientific applications will have a significant effect on
their performance, and architects should take these characteristics into account in the design
process.

This work explores various architectural extensions for accelerating Sandia’s scientific
applications, while taking into consideration three important properties of these applications
as established in part by Murphy et al. [13]:

• Large working set sizes with low temporal locality.
• High memory bandwidth requirements.
• Large basic block sizes.

The first and second properties tell us that conventional caches alone are likely insuffi-
cient for achieving acceptable memory performance. DCPs provide an alternative to bringing
every piece of data into the cache for processing on a HWP. By moving computations out to
the memory hierarchy, we have the potential of achieving the desirable results of cache am-
plification and increased parallelism. Part of the problem of utilizing DCPs is the partitioning
of computations among the HWP and DCPs. The objective of this work is to propose and
evaluate solutions to the problem of computational assignment. The ICC designs in section 4
will leverage our knowledge of the application properties illustrated by previous studies.

2.1. Baseline Microarchitecture. To achieve the parallelism benefits from ICC execu-
tion, the HWP must have the ability to fire an ICC efficiently. To achieve this, the HWP
contains microarchitectural extensions for packaging, issuing, and committing ICCs. Much
of this ICC-oriented activity taking place at the HWP will likely occur in parallel with the
normal HWP actions.

An example of such microarchitectural extensions is shown in figure 2.2. In this work,
we make no assumption regarding whether the ICC formation takes place at the compiler or
at run-time. In the figure, the ICC Filter partitions instructions for execution at the HWP and
DCPs. The ICC Constructor then packages the ICCs before passing them to the memory
interface. The RUU must have extensions for handling the return of values from the ICCs.

P.A. La Fratta and A.F. Rodrigues 157

F. 2.2. Microarchitectural extensions to a conventional pipeline for constructing and issuing ICCs. The top
figure shows a pipeline for a conventional processor. The bottom figure shows the extensions, highlighted in orange,
to this pipeline for supporting ICCs. Although the critical path will likely increase some (due to certain components
such as the filter and the additional RUU logic for receiving values from the DCPs), it should be possible to perform
much of the work in parallel with the conventional components.

3. Methodology. This work uses a methodology consisting of two phases. The ob-
jective of the first phase is to present methods for ICC formation. Section 4 presents two
of these methods. The second phase focuses on performance evaluation of these methods
through simulation.

3.1. Applications. The simulations are runs of a suite of eight of Sandia’s floating-point
intensive scientific applications. The applications cover a wide range of purposes, including
molecular dynamics (LAMMPS), shock mechanics of solids (CTH), radiation transport (ITS),
and circuit simulation (Xyce). For evaluating ICCs, the simulations use traces of 100 million
instructions of each application with varied inputs.

3.2. SST. For evaluating ICCs, we constructed a simulator based on the concept de-
scribed in section 2. The simulator is an extension of the Structural Simulator Toolkit (SST)
[17], which partitions simulation infrastructure between frontend and backend components.
The frontend parses and feeds instructions to the backend which models the activity of the
microarchitecture. For the simulations in this work, the frontend takes execution traces and
feeds them to the backend which can gauge memory traffic and execution time. For baseline
numbers, we simulate conventional architectures using a backend based on SimpleScalar. We
then modified the frontend for translating the traces into ICC-enhanced code, and also added
extensions to the SimpleScalar model in the backend for simulating the execution of ICCs.
The simulations gather statistics regarding cache hit rates and ICC formation in addition to
execution time to estimate performance improvements offered by ICCs.

4. ICC Design. Here, we define ICCs and explain their formation and execution in de-
tail. Two types of ICCs are introduced: In-Memory Operations and Graphlets. The following
sections define these ICC types, present methods for how a compiler or translator would form
these ICC types, and describe the requirements and actions of the microarchitecture for ICC
execution.

4.1. ICC Properties and Execution. DCPs execute small units of computation in the
form of ICCs. ICC generation (performed by the compiler or microarchitecture or a hybrid of
the two) takes groups of instructions, called the ICC’s Source Instruction Group (SIG) from
the HWP’s task for offloading to the DCPs. In this work, the SIG has three requirements that

158 In-Cache Computations

apply to ICC types:
• All external register inputs are ready at the time of issue.
• Their use does not require reordering of instructions in the code.
• The SIG must include at least one memory access.

The first requirement makes the execution of ICCs simpler. An ICC may use data at dif-
ferent physical locations in the system, but this data will always reside in memory and not
within registers. Next, there is always a clean insertion point in the code for the ICC creation
instruction, called the iccci. This means that the dependences between the ICC and other in-
structions can be indicated without major code modifications, such instruction reordering and
register renaming. This greatly simplifies the translation process. Finally, as a computation
that is fundamentally memory-centric, an ICC must write or read at least one data value to or
from memory. Additional requirements will be imposed by specific ICC type definitions.

To execute an ICC, the HWP first issues the iccci to a functional unit, called the ICC
constructor, for building the ICC. The ICC constructor bundles the SIG and any required reg-
ister values into a package marked with the memory addresses containing data the ICC will
use. The ICC then travels up the memory hierarchy, similar to a load or a store, for execu-
tion on a DCP. The destination DCP unpackages the ICC, and executes the computations.
When the computation requires data at a remote location, the DCP may fetch the value or re-
package the remaining computation into a new ICC for migration to a new location. ICC type
definitions specify the details of how ICC synchronization, communication, and migration
occur.

4.2. In-Memory Operations. An In-Memory Operation (IMO) is an ICC whose SIG
contains exactly one store and no external register outputs. The address to which the IMO’s
store writes a value is called the Target Memory Address (TMA). A load may be included in
the SIG only if it reads from the TMA. Hence, an IMO requires no communication due to
data dependences, and produces a single value for storage.

The goal of IMO SIG extraction is to maximize the number of instructions in the IMO
without violating the IMO SIG criteria. The instructions are grouped by basic block for the
extraction process. A dependence graph, G, is then constructed from the instructions in this
group. Algorithm 2 shows steps for forming the SIG for an IMO.

Algorithm 2: IMO SIG Extraction
Input: G, s
/* G: dependence graph of a basic block.

s: A store in G. */

Remove loads to addresses other than the TMA.1

Remove conditional control flow instructions.2

Create a topological sort, T , of the remaining vertices.3

Mark the node containing s. i = |T |.4

while i > 0 do5

if T(i) has at least one child and all of T (i)’s children are marked then6

Mark T (i).7

end8

i = i-1.9

end10

Remove all unmarked vertices, call the remaining subgraph H.11

Replace all nodes in G corresponding to the nodes in H with a single iccci node.12

P.A. La Fratta and A.F. Rodrigues 159

F. 4.1. IMO Translation Process

A compiler or translator contains an implementation of this algorithm which forms the
IMOs. In this work, we implement the algorithm in a trace translator for the simulations. The
translation process that implements this algorithm is illustrated in figure 4.1. The translator
first forms the dependence graph of instructions in a basic block. Nodes in the graph are
cut away using algorithm 2, and the remaining nodes are compressed into a single node that
represents the iccci node in the HWP’s executable. This new node contains three pieces of
information: the TMA, the instructions taken from the SIG, and the set of register indices
(marked RVS in figure 4.1) of external register inputs for the SIG.

The execution of an IMO, pictured in figure 4.2, is a multi-step process that the HWP
initiates with the iccci instruction. When the HWP reaches an iccci in the code, it issues
the instruction to the ICC constructor which packages the IMO and ships it out to the memory
hierarchy. The IMO travels up the hierarchy similar to a load or a store. When the TMA hits
a cache, the DCP that is nearest the physical memory holding the TMA unpackages the IMO
for execution.

One primary strength of IMOs is that they require little communication among the pro-
cessors. Because IMOs access exactly one address, this guarantees that its computation can
execute on one DCP with no dependences on remote data. Additionally, there are no register
dependences between the IMO’s SIG and the instructions executing at the HWP. Hence, the
IMO may return only an acknowledgement message to the HWP to indicate its completion.

4.3. Graphlets. The concept of graphlets leverages the third application property listed
in section 2. This property of large basic block sizes indicates to us that frequently when
a branch is taken, many instructions will follow with known control flow. In fact, if the
processor has reached the branch target before, it can leverage the fact that it has seen the
instructions that follow.

Further inspection of the basic blocks in Sandia’s applications reveals that they frequently
contain one large weakly connected component (WCC) accompanied by one or more small
WCCs. Additionally, the WCCs often interact with memory. Therefore, we define a graphlet
as an ICC whose SIG is a small WCC with at least one memory access in the data dependence

160 In-Cache Computations

F. 4.2. Execution of an IMO

F. 4.3. Example of a Basic Block Taken from CTH. In this example, the five WCCs containing memory
accesses are the graphlets.

graph of a basic block. Since the SIG is the entire WCC, it has no external register depen-
dences with instructions in the basic block outside the SIG. An example of a basic block
containing graphlets is shown in figure 4.3, taken from Sandia’s CTH application. Algorithm
3 gives the steps used for graphlet SIG extraction.

Algorithm 3: Graphlet SIG Extraction
Input: G, S R
/* G: dependence graph of a basic block.

S R: an integer used in the construction of graphlets. */

Split the graph into a set, S , of WCCs.1

Let B be the set of graphs with maximal number of nodes in S .2

Let |V(b)|=M, for some b∈B.3

foreach s∈(S –B) | s contains at least one load or store do4

if |V(s)| ≤ (M/S R) then5

Replace nodes of s in G with a single iccci node.6

end7

end8

The execution of graphlets is more complex than that of IMOs. First, the SIG of a
graphlet may contain more than one memory access. These accesses may have different

P.A. La Fratta and A.F. Rodrigues 161

addresses, implying that the graphlet may require data residing at more than one physical
location in the memory hierarchy. Our design assumes that the graphlet is executed on a
DCP at the lowest level of the memory hierarchy holding any data needed by the graphlet.
Any additional memory values required are retrieved via a fetch message to remote DCPs.
Another complication is that the SIG may contain indirect loads, which require a mechanism
for virtual address translation for the DCPs.

Another design point of graphlets is that they may return register values to the HWP
upon completion. This requires some extensions to the RUU or LSQ at the HWP that al-
low reception and handling of sets of graphlet-produced register values from the memory
interface.

The primary advantage of the graphlets approach is that the partitioning of instructions
leads to a natural load balancing between the HWP and the DCPs. While the graphlets –
which are relatively high latency events from the HWP’s perspective – are executing, the
HWP stays busy executing the largest WCC of instructions in the basic block. The number
of nodes in this WCC is divided by the size ratio value (S R in algorithm 3) to produce the
maximum number of nodes a WCC may contain for it to qualify as the SIG for a graphlet.
The size ratio can be varied to gauge the significance of load-balancing effects. S R is set to
two for the experiments in this work.

5. Evaluation. This section presents a discussion of experimental results with ICCs.
The simulations for baseline performance numbers use the SimpleScalar processor model
with configuration shown in table 5.1. We then modified the processor and memory models
to support execution of IMOs and graphlets. In the first set of experiments, we simulate the
eighteen application traces using the SimpleScalar-based processor model in SST unmodified.
The next set simulates the traces with IMO extensions. For every store in the trace for which
it is possible to extract a SIG of size>0 using algorithm 2, the translator transforms these
computations into an IMO. The speedup results, showing the ratio of execution time with
IMOs to execution time without IMOs, are given in figure 5.1. For nine of the traces, IMOs
offered noticeable improvement. For eight of the traces, there was an insignificant change in
performance, and for only one case did IMOs have a negative effect on performance. In the
next set of experiments, we ran the traces through a translator in SST’s frontend implementing
algorithm 3, and simulate graphlet architectural extensions in the backend. Figure 5.2 gives
the speedup results for the graphlet simulations. These results show that graphlets offered
improvement for eight of the traces, and were detrimental to performance in three cases. In
the remaining seven cases, there was negligible change in performance.

5.1. Analysis. Performance improvements from ICCs can generally be broken into two
components. The first is speedup of instructions executed at the HWP. This includes, for ex-
ample, relaxed pressure on execution resources, such as the RUU and LSQ, at the HWP due to
compiler-directed offloading of instructions to the DCPs. This also includes improved cache
hit rates of accesses executed at the HWP. The other component is the increased parallelism
achieved from the utilization of DCPs. The improvement from this component will be greater
if data placement in the caches leads to reduced memory traffic due to ICC communication.

We incorporated mechanisms into the frontend and backend for gathering statistics re-
garding simulator activities that are relevant to these components. We now discuss the trends
in these statistics to offer explanations of the positive, negative, and neutral performance re-
sults in figures 5.1 and 5.2.

Tables 5.2 and 5.3 include five values for each of the eighteen application traces. The
first column, IR (instruction ratio), is the relative amount of instructions in the original trace
that were offloaded from the HWP to the DCPs. This is a rough estimate of the potential
parallelism that the DCPs may exploit.

162 In-Cache Computations

T 5.1
Baseline HWP Configuration

Register Update Unit Size 64 entries
Load-Store Queue Size 32 entries
Fetch Queue Size 4 entries
Decode Width 4
Issue Width 8
Functional Units Integer ALU - 3

Integer Mult/Div - 1
FP Add - 2

FP Mult/Div - 1
Branch Predictor Bimodal, 2048 entries
Branch Target Buffer 512 entries, 4-way
Branch Mispredict Penalty 3 cycles
Caches DL1 - 2048 sets, 32-byte blocks, direct-mapped, 4-cycle latency

DL2 - 32768 sets, 32-byte blocks, 4-way, 27-cycle latency
TLBs ITLB - 16 entries, 4-way

DTLB - 32 entries, 4-way
30-cycle miss penalty

Main Memory Latency - 150 cycles
Bandwidth - 64 bits/cycle

F. 5.1. IMOs Speedup

F. 5.2. Graphlets Speedup

P.A. La Fratta and A.F. Rodrigues 163

The second column, AR (access ratio), is the percentage of the memory accesses in the
original trace that were inserted into ICCs. This value offers an estimate of the performance
impact of the HWP’s cache hit rates versus the ICC cache hit rates. The HWP’s cache hit
rates are the hit rates of the caches from memory accesses executed at the HWP – that is,
accesses that are not inserted into ICCs. The ICC cache hit rates are the hit rates of the
caches from memory accesses inserted into the ICCs. Let A be the set of addresses that an
ICC touches. For address a∈A, let La be the level of the lowest cache holding a. Let h be
an address in A such that Lh≥La ∀ a∈A. The ICC will then impose a miss in all cache levels
lower than Lh, and a hit at level Lh.

Hence, an AR of 0 indicates that the HWP is executing all memory accesses from the
original program. The ICC hit rates will have no impact on performance, and the HWP hit
rates will have significant impact on performance. An AR of 0.99 would indicate that almost
all memory accesses have been inserted into ICCs, implying that the hit rates of accesses from
the HWP will have little impact on overall performance.

The third column, L2 HR (L2 hit ratio), expresses the change (from baseline to with
ICCs) in L2 hit rate of memory accesses executed at the HWP. L2 HR is calculated by di-
viding the HWP hit rate at L2 of the simulations with ICCs by the L2 hit rate of the baseline
simulations. This ratio gives an indication of how the use of ICCs affects the L2 hit rate of
the HWP’s memory accesses. Ideally, the use of ICCs would increase HWP hit rate, and this
ratio would be > 1. L1 HR (the L1 hit ratios) are not included in the table because they are
1 for almost every case and insignificant. The next two columns show the ICC hit rates for
both the L1 and L2 caches. The last column is the performance improvement data shown in
figures 5.1 and 5.2, given here to improve readability of the results. (Note that all data in
tables 5.2 and 5.3 have slight rounding error.)

Considering the results in table 5.2, the first point of importance is that an IR of ≈0
indicates that IMOs will likely have negligible effect on performance. This means that al-
gorithm 2, the IMO SIG extraction algorithm, was unable to create a significant number
of SIGs given the computations in the trace. Hence, this immediately discounts five traces –
alegra.4B.WES 04, alegra.4B.hemipen, cube3.4B.crs, cube3.4B.vbr, mpsalsa.4B.airport3d 3
– from benefiting from IMOs. The performance results agree with this hypothesis: all of these
applications saw negligible performance effects from IMOs.

We will come back to the outlier, sppm.2B. For the remaining twelve traces, IMOs re-
sulted in positive performance. For half of these traces, the improvement was >5%. The gen-
eral trend is that performance follows IR. The six traces resulting in the greatest improvement
had IR>8%, while the other six had IR<7%. None of these had a significantly detrimental ef-
fect on HWP cache hit rates, and the trace with the most improvement, cth.4B.amr-2d-cust4,
resulted in an improvement in HWP L2 cache hit rate.

Now consider the outlier, sppm.2B. This trace has unusually high values of IR (53%)
and AR (75%), yet showed negative performance results. To explain this, we consider AR
along with the hit rates of the HWP and ICCs. Because of this very high AR value, the
ICC hit rate will have a significant impact on performance. This offers an explanation of the
negative results of this application, since the hit rates of both caches were ≈0. The reason
for this is that IMOs, as defined here, do not move data to or from the caches. They use the
data wherever it resides and return only an acknowledgement back to the host. Most of the
memory accesses are inserted into IMOs, and the results show that most of the working set
of this application remains in main memory.

Table 5.3 gives the statistics from the graphlets simulations. As is the case with IMOs,
IR≈0 should imply that graphlets will have negligible effect on performance. Only one ap-
plication in table 5.3, cube3.4B.vbr, follows this hypothesis. mpsalsa.4B.airport3d 3, with

164 In-Cache Computations

T 5.2
IMOs Simulation Statistics

Application IR AR L2 HR IHR L1 IHR L2 Impr.
alegra.4B.WES04 0.01 0.01 1.00 0.58 0.12 0.00
alegra.4B.hemipen 0.01 0.01 1.00 0.89 0.40 0.00
cth.4B.2gas 0.15 0.15 0.99 0.77 0.89 0.10
cth.4B.amr-2d-cust4 0.12 0.17 1.06 0.74 0.12 0.13
cth.4B.efp 0.14 0.15 0.97 0.86 0.74 0.11
cth.4B.sc 0.09 0.12 0.95 0.80 0.83 0.05
cube3.4B.crs 0.00 0.00 1.00 – – 0.00
cube3.4B.vbr 0.00 0.00 1.00 1.00 – 0.00
its.4B.cad.brems 0.06 0.10 1.00 0.96 0.05 0.04
its.4B.cg.brems 0.06 0.10 1.00 0.94 0.04 0.03
lmp.4B.flow.langevin 0.09 0.06 1.00 0.43 0.07 0.07
lmp.4B.lj.fix 0.06 0.06 0.99 0.53 0.70 0.03
lmp.4B.poly.chain.a 0.08 0.07 1.00 0.70 0.79 0.06
mpsalsa.4B.airport3d 3 0.00 0.01 0.92 0.03 0.00 -0.01
mpsalsa.4B.thermal conv square 0.03 0.05 0.99 0.78 0.13 0.01
sppm.2B 0.53 0.75 1.77 0.00 0.00 -0.03
xyce.4B.invertgen75 0.04 0.04 1.00 0.67 0.99 0.01
xyce.4B.invertgen v3 75 0.04 0.04 1.00 0.61 0.94 0.01

IR of only 1% and a 4% slowdown is an exception to this rule. Note that although only 2%
(996 889) of all memory accesses in the original trace are inserted into graphlets, this is a
significant portion (23%) of L2 accesses. Even a relatively small number of additional misses
in higher cache levels can have a significant effect on performance. Hence, negative effects
on L2 cache hit rate are particularly detrimental to performance when L1 cache hit rate is
low. Note that one other application among graphlets exhibited both a low HWP L1 hit rate
and low L2 HR (cube3.4B.crs), and this application also saw a drop in performance (3%).
mpsalsa.4B.airport3d 3 also saw these hit rate changes for IMOs, but without the significant
drop in performance. The likely reason is that IMOs are more tolerant of high latency ac-
cesses occurring within IMOs, since the accesses within IMOs are guaranteed, by definition,
to have no output register dependences.

The remaining traces have high values of IR and AR, indicating high potential perfor-
mance improvement from graphlets. However, three of these applications (alegra.4B.hemipen,
lmp.4B. f low.langevin, and lmp.4B.poly.chain.a) showed no improvement, and another
(alegra.4B.WES 04) saw a 4% drop. L2 HR≈1 for all of these traces, and trends in the re-
maining statistics of ICC hit rate offer an explanation for the remaining results. Notice that
the four applications mentioned above all have a mediocre ICC L1 hit rate accompanied by a
low or mediocre ICC L2 hit rate. The traces with a high ICC L1 hit rate (its.4B.cad.brems,
its.4B.cg.brems, sppm.2B) perform well. The traces with mediocre ICC L1 hit rate along
with a high L2 hit rate (xyce.4B.invertgen v3 75, xyce.4B.invertgen75, cth.4B.amr-2d-cust4)
offered little improvement. The remaining five traces don’t fall into any of the prior cat-
egories, exhibiting mediocre ICC L1 and L2 hit rates. For these traces, the performance
generally is in proportion to IR.

6. Conclusions. Using available cache space to improve performance, especially for ap-
plications with high memory bandwidth requirements, requires intelligent data placement de-
cisions. Adding computational logic next to the caches increases the difficulty of the problem
of resource utilization, but reveals opportunities for cache amplification, decreased memory
traffic, and increased parallelism. In this work, this available logic is put to use with In-Cache
Computations (ICCs), revealing some of the difficulties in computation assignment and data
placement. The results show that offloading computation to in-cache processors renders data
placement decisions more important, as performance benefits of ICCs are highly dependent
on cache hit rates. Cache conflicts between the HWP and ICCs are a key difficulty in the

P.A. La Fratta and A.F. Rodrigues 165

T 5.3
Graphlets Simulation Statistics

Application IR AR L2 HR IHR L1 IHR L2 Impr.
alegra.4B.WES04 0.08 0.12 1.00 0.59 0.34 -0.04
alegra.4B.hemipen 0.08 0.11 0.99 0.59 0.53 0.00
cth.4B.2gas 0.09 0.15 1.00 0.85 0.82 0.08
cth.4B.amr-2d-cust4 0.12 0.23 0.98 0.63 0.85 0.03
cth.4B.efp 0.10 0.16 1.00 0.93 0.37 0.08
cth.4B.sc 0.08 0.14 1.00 0.85 0.51 0.06
cube3.4B.crs 0.00 0.01 0.91 0.00 0.00 -0.03
cube3.4B.vbr 0.00 0.00 0.98 0.00 0.01 0.00
its.4B.cad.brems 0.06 0.17 0.99 0.97 0.75 0.06
its.4B.cg.brems 0.06 0.17 0.99 0.98 0.25 0.05
lmp.4B.flow.langevin 0.07 0.15 1.00 0.85 0.21 0.00
lmp.4B.lj.fix 0.05 0.09 1.00 0.81 0.82 0.02
lmp.4B.poly.chain.a 0.08 0.14 1.00 0.77 0.49 0.00
mpsalsa.4B.airport3d 3 0.01 0.02 0.88 0.00 0.00 -0.04
mpsalsa.4B.thermal conv square 0.03 0.10 0.99 0.93 0.41 0.03
sppm.2B 0.04 0.13 1.00 1.00 0.92 0.05
xyce.4B.invertgen75 0.08 0.14 1.00 0.58 0.91 0.02
xyce.4B.invertgen v3 75 0.08 0.14 1.00 0.54 0.87 0.01

problem of data placement.
Our simulation results show that a system supporting ICCs can offer significant speedups

over processors backed by a conventional cache hierarchy. There are several topics of interest
for future work for improving ICC performance, particularly in the area of optimizing HWP
and ICC cache utilization. This work will consider how to leverage past studies of advanced
cache management in scratchpads, bypassing, insertion policies, and variable line sizes to
improve data placement decisions. Another task of merit is the enhancement of multicore
hierarchies with DCPs. ICCs may significantly reduce memory traffic and increase paral-
lelism, especially in the presence of high cache coherence traffic, synchronization overhead,
and cache pollution.

REFERENCES

[1] S. B, Y. C, X.-H. S, A taxonomy of data prefetching mechanisms, Parallel Architectures, Algo-
rithms, and Networks, 2008. I-SPAN 2008. International Symposium on, (2008), pp. 19–24.

[2] J. C G. S. S, Cooperative cache partitioning for chip multiprocessors, in ICS ’07: Proceedings of
the 21st annual international conference on Supercomputing, New York, NY, USA, 2007, ACM, pp. 242–
252.

[3] Y. E D. F, Probabilistic prediction of temporal locality, Computer Architecture Letters, 6
(2007), pp. 17–20.

[4] Z. F, L. Z, J. B. C, A. I, M. A. P, Active memory operations, in ICS ’07:
Proceedings of the 21st annual international conference on Supercomputing, New York, NY, USA, 2007,
ACM, pp. 232–241.

[5] A. G, H. A, R. R, S. T. S, K. L, Scalable load and store processing in latency
tolerant processors, in ISCA ’05: Proceedings of the 32nd annual international symposium on Computer
Architecture, Washington, DC, USA, 2005, IEEE Computer Society, pp. 446–457.

[6] C. J. H S. V. A, Memory-side prefetching for linked data structures for processor-in-memory
systems, J. Parallel Distrib. Comput., 65 (2005), pp. 448–463.

[7] I. H C. L, Memory prefetching using adaptive stream detection, in MICRO 39: Proceedings of the
39th Annual IEEE/ACM International Symposium on Microarchitecture, Washington, DC, USA, 2006,
IEEE Computer Society, pp. 397–408.

[8] S. I, J. J.E. B, P. P, L. N, J. R, L. L, D. H, Embedded dram: Technology
platform for the blue gene/l chip, IBM Journal of Research and Development, 49 (2005), pp. 333–350.

[9] T. L. J, D. A. C, M. C. M, W. W. H, Run-time cache bypassing, IEEE Transac-
tions on Computers, 48 (1999), pp. 1338–1354.

[10] N. J, Improving direct-mapped cache performance by the addition of a small fully-associative cache and
prefetch buffers, Computer Architecture, 1990. Proceedings., 17th Annual International Symposium on,

166 In-Cache Computations

(1990), pp. 364–373.
[11] M. K Y. S, Counter-based cache replacement and bypassing algorithms, Computers, IEEE

Transactions on, 57 (2008), pp. 433–447.
[12] S. L, A. K, S. K, J. B, P. K, P. S, G. B, A heterogeneous lightweight

multithreaded architecture, Parallel and Distributed Processing Symposium, 2007. IPDPS 2007. IEEE
International, (2007), pp. 1–8.

[13] R. M, A. R, P. K, K. U, The implications of working set analysis on super-
computing memory hierarchy design, in ICS ’05: Proceedings of the 19th annual international conference
on Supercomputing, New York, NY, USA, 2005, ACM Press, pp. 332–340.

[14] M. Q, A. J, Y. P, S. S, J. E, Set-dueling-controlled adaptive insertion for high-
performance caching, Micro, IEEE, 28 (2008), pp. 91–98.

[15] M. K. Q Y. N. P, Utility-based cache partitioning: A low-overhead, high-performance, runtime
mechanism to partition shared caches, Microarchitecture, 2006. MICRO-39. 39th Annual IEEE/ACM
International Symposium on, (2006), pp. 423–432.

[16] A. R, R. M, P. K, K. U, Characterizing a new class of threads in scientific
applications for high end supercomputers, in ICS ’04: Proceedings of the 18th annual international
conference on Supercomputing, New York, NY, USA, 2004, ACM Press, pp. 164–174.

[17] A. F. R, Programming future architectures: dusty decks, memory walls, and the speed of light, PhD
thesis, Notre Dame, IN, USA, 2006. Adviser-Peter Kogge.

[18] K. R, A. R, K. U, K. C, Scientific applications vs. spec-fp: a comparison
of program behavior, in ICS ’06: Proceedings of the 20th annual international conference on Supercom-
puting, New York, NY, USA, 2006, ACM Press, pp. 66–74.

[19] S. T, J. B, D. R, Pim lite: a multithreaded processor-in-memory prototype, in
GLSVSLI ’05: Proceedings of the 15th ACM Great Lakes symposium on VLSI, New York, NY, USA,
2005, ACM, pp. 64–69.

[20] J. T, L. C, J. T, Scalable cache miss handling for high memory-level parallelism, Microar-
chitecture, 2006. MICRO-39. 39th Annual IEEE/ACM International Symposium on, (2006), pp. 409–
422.

[21] S. P. VW D. J. L, Data prefetch mechanisms, ACM Computing Surveys, 32 (2000), pp. 174–
199.

CSRI Summer Proceedings 2008 167

ARBITRARY DIMENSION REED-SOLOMON CODING AND DECODING FOR
EXTENDED RAID ON GPUS

MATTHEW L. CURRY∗, H. LEE WARD†, ANTHONY SKJELLUM‡, AND RON BRIGHTWELL§

Abstract. Reed-Solomon coding is a method of generating arbitrary amounts of checksum information from
original data via matrix-vector multiplication in finite fields. Previous work has shown that CPUs are not well-
matched to this type of computation, but recent graphical processing units (GPUs) have been shown through a case
study to perform this encoding quickly for the 3 + 3 (three data + three parity) case. In order to be utilized in a true
RAID-like system, it is important to understand how well this computation can scale in both the number of data disks
and parity disks supported. This paper details the performance of a general Reed-Solomon encoding and decoding
library that is suitable for use in RAID-like systems. Both generation and recovery are benchmarked and discussed.

1. Introduction. Our previous work [2] has given a thorough treatment of the reliabil-
ity of disk drives composed into arrays. Some metrics of the individual drives, such as the
mean time to failure (MTTF), are more optimistic than real-world measured results [6]. Fur-
thermore, preventative reporting mechanisms like SMART (Self-Monitoring, Analysis, and
Reporting Technology) are not a reliable means of proactively preventing data loss by identi-
fying likely drive failures [3]. Even bit error rates are becoming more important as individual
drives become larger. By showing failure rates for several configurations and situations, we
concluded that more reliable storage configurations are required to avoid data corruption.
While nested RAID configurations (e.g., RAID 1+0 and RAID 5+0) can alleviate reliability
concerns for very large arrays, this is an inefficient use of hardware resources. Nested RAID
drastically increases the amount of storage hardware required, increasing expense per unit of
storage.

We proposed extending the RAID philosophy by implementing storage groups with arbi-
trary numbers of parity disks, then described the challenges of implementing a system. Gen-
eration of data on the parity disks requires some type of error correcting code. An example
of a common space-efficient coding scheme for generating arbitrary parity is Reed-Solomon
coding [5]. In an example system of n + m disks, a code can be created such that any n disks
can be used to regenerate the contents of any other m disks in the set.

While space-efficient, Reed-Solomon coding is computationally intensive. For an n + m
system, generating m bytes of parity for n bytes of data requires nm multiplication operations
in a finite field [4], where n is customarily larger than m. Multiplying numbers with direct
methods in a finite field requires several elementary bitwise operations. A lookup table is
a common optimization, but most x86/x86-64 CPUs do not implement an operator to allow
parallel table lookups [1]. SSE5 may allow such vectorization in the future, but this instruc-
tion set has yet to be implemented. These conditions cause x86/x86-64 CPUs to be slow in
performing large numbers of finite field multiplications.

In order to deal with the high cost of computing the parity for n + m systems where m >
2, we proposed using an outboard compute device which is better suited to Reed-Solomon
coding. In particular, we detailed the advantages of using a GPU, while addressing integration
into a RAID system. We benchmarked a 3 + 3 implementation of the Reed-Solomon coding
component, showing up to a tenfold improvement over a CPU running a well-known Reed-
Solomon coding library.

∗University of Alabama at Birmingham, curryml@cis.uab.edu
†Sandia National Laboratories, lee@sandia.gov
‡University of Alabama at Birmingham, tony@cis.uab.edu
§Sandia National Laboratories, rbbrigh@sandia.gov

168 Reed-Solomon for GPU RAID

In this paper, we show the implementation and performance of a generalized GPU cod-
ing library. It is capable of generating arbitrary amounts of parity, and recovering up to m
erasures.

2. Motivation: GPU RAID. The intended application of this library will be a RAID
system which utilizes a GPU to perform checksumming operations. This is a challenging
application because of the nature of GPU computation, which is vastly different from that of
traditional RAID controllers and CPUs used for software RAID. Being that RAID controllers
are inline computation devices, high bandwidth and low latency are easily achievable while
performing the parity computations. Similarly, CPUs operate directly on main memory, al-
lowing partial results to be written to disk while the CPU is still working on other parts of
the same task. GPUs have a different method of computing: In order to be efficient, large
contiguous buffers must be transferred to the GPU, operated upon, then transferred back into
main memory for writing to disk. This introduces an unavoidable amount of latency.

In order to combat latency, a system architecture (pictured in Figure 2.1) has been pro-
posed which provides full bandwidth available from the disks used for the RAID system, and
little apparent latency for writes from the user perspective. The main requirement of the sys-
tem is the gathering of requests into buffers. Here, the driver which accepts the write requests
copies the relevant data into the GPU Accumulate Buffer, which gathers requests while the
GPU is busy doing other work. Once the GPU becomes available, the buffers are rotated such
that new requests go into an empty buffer and the GPU Accumulate Buffer is made to be
the GPU Operate Buffer. The GPU performs DMA transfers from this buffer, operates on its
contents, and returns the parity portions to the GPU Operate buffer. When this is completed
(and outstanding disk write requests are completed), the buffers are rotated again. The GPU
Operate Buffer moves to the Disk Writeout Buffer, where its contents are flushed to disk.

GPU AccumulateBuffer GPU Operate

Buffer

...Disk 0 Disk 1 Disk 2 Disk 3 Disk
n+m

Driver copies write
request data to
accumulation

buffers

Buffers rotate as
GPU finishes operating

on Operate Buffer

Retire write
request and
complete

asynchronously

Operating System Kernel

Network
Buffer

Block
Buffer
Cache

Network
Buffer

Driver
(Finish

Request)

Disk Writeout
Buffer

iScsi Request

iScsi Reply

Network Packet

Network Packet

Contents of
Operate Buffer
Transferred to
GPU Memory

GPU (Parity Calculation Performed)

F. 2.1. A GPU RAID Architecture for Write Access

2.1. Caveats. This is a simplified diagram which assumes full stripe updates rather than
partial stripe updates, with the implementation of the experiment mirroring this assumption.
Future revisions of this work will include update calculations for partial stripe writes. Also,
an often-discussed downside to this architecture is that there is a need for three times the
buffer space compared to other more traditional RAID implementations.

3. Implementation. Due to a novel memory architecture, as well as good general avail-
ability, this implementation is for CUDA-enabled GPUs produced by NVIDIA. CUDA is a
GPGPU (general-purpose computation on GPUs) technology which allows programming of

M.L. Curry, H.L. Ward, A. Skjellum, and R.B. Brightwell 169

GPUs using a C-like language and syntax divorced from the graphics idiom. While other
GPGPU toolkits exist, CUDA is the most general purpose and widely available. For more
information on the choice of CUDA, please see the initial paper [2].

RAID implementations are expected to exhibit several dynamic behaviors, including au-
tomatic regeneration of lost content and addition of extra data disks. A point to note is that
the size of the tasks involved are long running and infrequent. RAID array regeneration takes
place over several hours, as does the reshaping of an array. Furthermore, it is desired that the
array can operate for long periods without either of these events occurring. These assump-
tions allow for compile-time fixing of n and m, which confers many benefits. One of the
biggest benefits is the speed at which the portions of the program can run on the GPU. As
with many architectures, loop unrolling is a well-known technique for increasing the speed of
a given program on a GPU. However, this becomes difficult to exploit effectively on a GPU
when the loop size is determined at runtime. As exceptional situations occur, new CUDA
binaries can be generated to meet the new needs. CUDA provides facilities to allow loading
and unloading of routines during runtime. This philosophy was applied to the parity genera-
tion portion of this work. The previous paper also used compile-time fixing of m and n, but
used hard-coded literals instead of constants. This implementation has been tested for widely
varying values of m and n.

This implementation further differentiates itself from the previous implementation in that
several other parameters are easily tunable at compile time for current and upcoming graph-
ics card architectures. While performing this work, many surprises were discovered in the
implementation of the compiler for CUDA which were exposed specifically during various
performance tunings. For instance, CUDA supports a sizeof operation for determining the
size of a type. In many C and C++ compilers, this operation is compiled to an integer con-
stant when a definite type is used as an argument. However, the CUDA compiler does not
compile the sizeof operator to a constant, but instead evaluates it at runtime. Being that
fetches from global memory can be more efficiently performed using types that are larger
than a single byte, the GPU programs perform fetches with different data types than those
used for calculation. In order to easily change the type used for fetching data (for compile-
time performance tuning), a typedef and the sizeof operator are used for defining the fetch
type and looping over its contents, respectively. A significant performance improvement was
found when using a constant value instead of the sizeof operator in loops.

4. Results. These experiments were carried out on a workstation which contains a Core
2 Quad Q6600, 4 gigabytes of memory, and an NVIDIA GeForce 8800 Ultra.

Three performance graphs (Figures 4.1, 4.3, and 4.4) have been generated. In general,
the horizontal axis denotes how much data is given to a routine for n + m encoding. For
both cases, n blocks of data are provided as input, each of size/n bytes. For example, for a
data point at 1000 kilobytes in a 5 + 3 system, an input of 1000 kilobytes is provided to the
routine, which splits it into 5 blocks of 200 kilobytes apiece. This allows direct comparison
of the methods with the same amount of input data. The vertical axis shows the throughput of
the routines, which includes all data transfer between the host memory and the GPU, for the
amount of data provided. So, while a 5+3 computation of 1000 kilobytes in total requires the
transfer of 1600 kilobytes, the vertical axis denotes the time required to compute the parity
and divides it by the cumulative size of the n data blocks. While this causes a less dense
sampling of performance as n increases, this provides the most fair representation.

Figure 4.1 shows the performance of three n + 3 configurations corresponding to arrays
with 8, 16, and 32 disks. This result is significantly more optimistic than the last paper’s
results, even while the benchmark is being run on the same platform. Figure 4.3 shows the
relative improvement of the new implementation over the old implementation. One trend to

170 Reed-Solomon for GPU RAID

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 0 500 1000 1500 2000 2500

S
pe

ed
 (

M
B

/s
)

Size of Input (KB)

Parity Generation Performance

5+3
13+3
29+3

F. 4.1. Speed of GPU Parity Generation

note is that as n increases relative to m, overall performance increases. This is attributable to
the amount of parity that is transferred from the GPU to the CPU. As n increases, the number
of computations per byte of data remains constant. Given n, m, and a data size of s:

complexity(n + m) = matvec(n × m)(numberO f S tripes)
= (2nm)(s/n)
= 2ms

A true RAID system would include the notion of a block size in the above equation. However,
the block size is not a concern of this layer of software. The block size has been factored out
of the equation, as it does not affect the result.

As computations remain constant, data transferred back to the host does not remain con-
stant. As mentioned previously, with a fixed data size of s, the size of each data block and
parity block is s/n. As n grows, the collective size of all parity (ms/n) decreases, causing a
decrease in transfer time. Figure 4.2 supports this hypothesis by showing that, although the
absolute amount of computation remains the same, the percentage of time spent transferring
data across the PCI bus decreases as n increases.

A further detail indicates that the buffer size required is not a problem, even on a sys-
tem which has other processes and tasks. For all tested configurations, only approximately
one megabyte of data is required to keep the system exhibiting peak performance for the
largest configuration. As previously mentioned, the system needs at least three buffers of the
size processed on the GPU in order to function. This amounts to only three megabytes, an
incredibly tiny amount compared to today’s typical memory size.

A more interesting trend is found in Figure 4.4. While the throughput of the decoding
routine is still higher than the throughput of the generation routine in our original paper, it
is significantly slower than the generation in this paper. There are many reasons for this

M.L. Curry, H.L. Ward, A. Skjellum, and R.B. Brightwell 171

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0 500 1000 1500 2000 2500

P
er

ce
nt

ag
e

Size of Input (KB)

Percentage of Time Spent Computing

5+3
13+3
29+3

F. 4.2. Time Spent Computing (Not Including PCI Traffic) as a Percentage of Total Time

disparity:
• While generation requires multiplication of a vector of n bytes by a m × n matrix,

recovery requires multiplying a vector of n bytes by a n×n matrix. This is significant,
as m is often much smaller than n.

• Generation creates m bytes of output for every n bytes of data. However, recovery
requires reconstructing a full set of n data bytes from a mixture of data bytes and
parity bytes. The current implementation replaces buffers that are marked “failed”
with parity buffers, then updates these parity buffers in place with the data buffers’
previous value. The result requires either noncontiguous transfers from GPU mem-
ory or transfer of all n data buffers from the GPU. This procedure can obviously be
optimized, but as it is currently implemented the transfer of the recalculated data is
significant.

• One single regeneration algorithm is not sufficient to exploit the GPU’s best perfor-
mance. In order to obtain the best performance, one must balance how slow global
memory of the GPU is versus how much computation is required to avoid such ac-
cesses. In this case, m out of n buffers are being updated with a matrix multiplication.
It is simple to optimize such a computation such that no more than mn multiplica-
tions are required instead of the full n2 described by the original decoding algorithm.
Such a computation requires knowledge of which buffers have failed, which would
typically be passed via a pointer to a data structure describing which buffers need
regeneration. For the smaller cases (n = 5 and n = 13), the expense of loading and
indexing this array slows the overall computation because of the additional memory
references. The larger case obviously requires more careful optimization.

As it is, the regeneration time for large arrays is not desirable. Such an operation should
be as fast as possible in order to support read requests of a degraded array, as well as to

172 Reed-Solomon for GPU RAID

 0

 100

 200

 300

 400

 500

 600

 700

 0 50 100 150 200 250 300 350 400 450 500

S
pe

ed
 (

M
B

/s
)

Size of Input (KB)

Comparison of New Implementation with Original Implementation on 3+3 Case

New Implementation
Old Implementation

F. 4.3. Performance Comparison of New and Old Implementations

speed rebuilding time. Luckily, we believe that one lesson applied to parity generation can
be applied to data recovery. Data recovery in a RAID system is required when a disk in the
array fails, requiring its entire contents to be regenerated. This operation consists of decoding
gigabytes of data, causing long periods of disk input from remaining disks and output to the
replacement disk. This routine can gain a priori information on which disks are failed by
being compiled specifically to recover the failed buffers and handle them appropriately in
memory to allow contiguous transfers. Such an optimization will require only a few seconds
for initialization, but can yield significant performance increases over the required hours of
computation.

5. Conclusion and Future Work. This work presented an update to a previous work
describing a Reed-Solomon coding library suitable for extended RAID arrays. It utilizes
GPUs enabled with NVIDIA’s CUDA technology, and allows for coding and decoding faster
than modern CPUs. This work aimed to generalize, broaden, and optimize the previously
developed library.

The results for arbitrary dimension Reed-Solomon coding are encouraging: The com-
putation is very fast, with improvements already available via hardware upgrades. With the
advent of asynchronous overlapping transfers to CUDA-enabled GPUs, it may become pos-
sible to hide the cost of the PCI-Express transfer altogether.

Decoding for small cases looks promising, much like the original paper showed promise
for coding. GPUs certainly outperform CPUs at the same task for n ≤ 13. However, as the
size of an array scales, it becomes obvious that decoding is going to prove to be a more com-
plex challenge. It is not a simple matter to get the most performance possible out of a GPU
due to its restrictions on data layout, access, and transfer. In order to address these challenges,
this paper has laid out several approaches, including further compile-time optimizations be-
yond simple loop unrolling. This includes compilation of code for specific data layouts and

M.L. Curry, H.L. Ward, A. Skjellum, and R.B. Brightwell 173

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 600

 650

 0 500 1000 1500 2000 2500

S
pe

ed
 (

M
B

/s
)

Size of Input (KB)

Decoding Performance

5+3
13+3
29+3

F. 4.4. Speed of GPU Decoding (Three Lost Buffers)

recovery workloads on the fly.

REFERENCES

[1] H. P. A, The mathematics of RAID-6. http://kernel.org/pub/linux/kernel/people/hpa/raid6.
pdf, 2007. Accessed on April 8, 2008.

[2] M. L. C, A. S, H. L. W, R. B, Accelerating Reed-Solomon coding in RAID
systems with GPUs, in Parallel and Distributed Processing, 2008. IPDPS 2008. IEEE International Sym-
posium on, 2008.

[3] E. P, W.-D. W, L. A. B, Failure trends in a large disk drive population, in Proceedings
of the 5th USENIX Conference on File and Storage Technologies, Berkeley, CA, USA, 2007, USENIX
Association, pp. 17–28.

[4] J. S. P, A tutorial on Reed-Solomon coding for fault-tolerance in RAID-like systems, Software – Practice
& Experience, 27 (1997), pp. 995–1012.

[5] I. S. R G. S, Polynomial codes over certain finite fields, Journal of the Society for Industrial and
Applied Mathematics, 8 (1960), pp. 300–304.

[6] B. S G. A. G, Disk failures in the real world: what does an MTTF of 1,000,000 hours mean
to you?, in Proceedings of the 5th USENIX Conference on File and Storage Technologies, Berkeley, CA,
USA, 2007, USENIX Association, pp. 1–1.

174 CSRI Summer Proceedings 2007

D. Ridzal and S.S. Collis 175

Applications

Necessity is the mother of invention and, ultimately, applications drive the advances in
computational science, mathematics, and algorithms. The papers in this section span several
disciplines, and utilize advanced mathematical and computational tools to address important
problems and applications in their respective fields.

Seleson et al. introduce peridynamics, a formulation of continuum mechanics that is
based on integral equations rather than PDEs, as an upscaling of molecular dynamics. In
particular, they show that dispersion effects and the higher order gradient PDE obtained from
molecular dynamics and peridynamics are consistent to leading order. Numerical results con-
firm that in contrast to continuum mechanics, dispersion effects are well–captured by peri-
dynamics simulations. Kim and Hennigan provide an overview of the mathematical models
included in Charon, a numerical simulator code used to model electrical semiconductor de-
vices, and discuss changes required for the addition of quantum effects. In particular, they
present a numerical scheme based on the coupling of Schrödinger and Poisson equations.
Numerical results indicate that taking into account quantum effects, the peak electron den-
sity values in an n-channel MOSFET device are located a few nanometers away from the
interface, differing from the classical density distribution that predicts a peak at the interface.
Jayaraman et al. describe an atomistic simulation procedure used for the calculation of melt-
ing points of complex molecules. The procedure, implemented in LAMMPS, is based on
recently published work involving a novel thermodynamic integration technique. The results
obtained from LAMMPS simulations are compared to a reference code (APSS) and indicate
that the LAMMPS implementation was carried out successfully. Harden and Lehoucq present
a novel idea that enables convergence verification, typically applied in the context of mesh–
based PDE simulations, in the inherently mesh–free setting of molecular dynamics. They
develop equivalent molecular dynamics/continuum mechanics formulations for a typical test
problem and, using the molecular dynamics package LAMMPS, demonstrate that it is pos-
sible to recover convergence rates associated with the PDE model. Ames et al. demonstrate
that long–term sustainability of large scientific application codes can be achieved by building
a team ethic that relies on the principle of Lean Software Development in combination with a
testing environment that offers rigorous verification and validation services. Proof of concept
is given on the example of ALEGRA, a complex multiphysics code that couples magnetics,
hydrodynamics, thermal conduction, and radiation transport.

D. Ridzal
S.S. Collis

December 11, 2008

176 CSRI Summer Proceedings 2007

CSRI Summer Proceedings 2008 177

PERIDYNAMICS AS AN UPSCALING OF MOLECULAR DYNAMICS

PABLO SELESON∗,‡, MICHAEL L. PARKS†,‡, AND MAX GUNZBURGER∗

Abstract. The nonlocal continuum mechanics theory peridynamics, presented in [7], is based on an integral
formulation, in contrast to the local classical theory of elasticity. We focus on the nonlocality of the peridynamic
model and show how peridynamics preserves dispersion effects inherent to nonlocal molecular dynamics models.
A one dimensional analytical comparison of dispersion relations and higher order gradient equations of motion for
molecular dynamics and peridynamics is presented, as well as computational results.

1. Introduction. Substantial computational challenges are involved in materials science
modeling, because of the complexity of the systems of interest. Two main descriptions are
traditionally presented in the literature of materials science modeling: the continuum me-
chanics (CM) model, which assumes a continuity of matter, and the molecular dynamics
(MD) model, which employs a discrete description of materials. For large systems, MD
models are computationally too expensive, while classical CM models do not accurately cap-
ture the microscopic properties caused by spatial inhomogeneities. Our purpose is to develop
peridynamics (PD) as an upscaling of MD so that it preserves characteristic properties of MD
models lost by classical CM models, while being less expensive than MD.

Starting with MD models, we derive PD models, and show that the equations of motion
and the dispersion relations agree between both models when preserving the nonlocality of
the interaction. Following that, we expect to recover in PD similar dynamics as in MD at
reduced cost. We support this analysis with numerical experiments.

In section 2 we summarize the peridynamics theory and describe the specific model im-
plemented in this investigation. In section 3 we present analytical results for the dispersion
relations obtained in MD and PD. In section 4 we present the higher order gradient PDE ob-
tained for PD and MD, showing agreement between the equations of motion of both models
up to leading order. In section 5 we present a stability analysis for the velocity Verlet algo-
rithm implemented on our experiments. In section 6 we present the results of our numerical
simulations, showing how dispersion effects introduced by the nonlocality of the MD system
are preserved in PD. In section 7 we present conclusions.

2. The Peridynamics Model. The nonlocal continuum theory peridynamics is based
on an integral formulation, in contrast to the differential formulation of classical continuum
mechanics. For more on the peridynamic theory, see [7]. For more on the discretization of
the PD model, see [8, 4].

The general peridynamic equation of motion [7] is

ρü(x, t) =
∫
Hx

f
(
u(x′, t) − u(x, t), x′ − x

)
dVx′ + b(x, t), (2.1)

with Hx a neighborhood of x (i.e. a spherical region of radius δ around x, where δ is called
the horizon), u the displacement vector field, b the body force, ρ the mass density, and f
the pairwise force function. We define the relative position ξ = x′ − x, and the relative
displacement η = u(x′, t) − u(x, t). Let f be derived from a scalar micropotential w s.t.

f(η, ξ) =
∂w
∂η

∀η, ξ.

∗Department of Scientific Computing, Florida State University, {seleson,gunzburg}@scs.fsu.edu. Research sup-
ported by DOE/OASCR under grant number DE-FG02-05ER25698.

†Sandia National Laboratories, mlparks@sandia.gov. Research supported by DOE/OASCR.
‡Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the

United States Department of Energy under contract DE-AC04-94AL85000.

178 Peridynamics as an Upscaling of Molecular Dynamics

In general, we express the pairwise force function as

f(η, ξ) = f (|ξ + η|, ξ)
ξ + η

|ξ + η|
,

with f a scalar-valued function. The macroelastic energy density is

W =
1
2

∫
Hx

w(η, ξ)dVξ .

In the prototype microelastic brittle (PMB) model [8], we choose

f = cs,

with c a constant depending on the bulk modulus of the material and the horizon, where for a
3-D material the relation

c =
18K
πδ4

holds, with K the bulk modulus. Furthermore, s is the stretch defined by

s =
|ξ + η| − |ξ|

|ξ|
,

and the corresponding pairwise potential function of the PMB model is

w =
1
2

cs2|ξ|.

3. Relating Peridynamics and Molecular Dynamics through Dispersion Relations.
In this section, we show that the dispersion relation (3.3) obtained for a 1-D nonlocal linear
chain of atoms matches the corresponding relationship (3.5) obtained for the peridynamic
PMB model in the continuum limit, when preserving the nonlocality of the system. In con-
trast, (3.3) is not consistent with a local continuum model. For the purposes of this paper, we
will use a nonlocal mass-spring network as our representative molecular dynamics model.

3.1. Molecular Dynamics Dispersion Relation. Our one dimensional MD model con-
sists of a nonlocal linear chain of atoms. Each particle is assumed to have a mass m, and is
connected to N neighbors on each side. The relaxed distance for nearest neighbors is assumed
to be a, and the spring constant between a particle and its j-th neighbor is K/(ja), with K a
constant. The equation of motion is

mü(x, t) =
N∑

j=−N

K
ja

[
u(x + ja, t) − u(x, t)

]
, (3.1)

with u(x, t) the displacement field. Setting u(x, t) = ei(kx+ωt), we get the dispersion relation

ω2 =

N∑
j=1

2
K
m

1
ja

[
1 − cos(jka)

]
.

Assuming Nka � 1 (i.e. we assume the wavelength λ is much longer than the maximum
interaction distance Na) we can apply a Taylor expansion for every j and get the approximate
dispersion relation

ω2 ≈ 2
K
m

[(N∑
j=1

j
)ak2

2!
−

(N∑
j=1

j3
)a3k4

4!
+

(N∑
j=1

j5
)a5k6

6!
−

(N∑
j=1

j7
)a7k8

8!

]
.

P. Seleson, M.L. Parks and M. Gunzburger 179

Introducing the notation ζN(n) =
∑N

j=1 jn, and using the Taylor expansion (up to order 4)
of the function

√
1 + x and the relation between mass and density m = ρa, we obtain the

expression

ω ≈

√
K

a2ρ

[√
ζN(1)ak −

ζN(3)√
ζN(1)

a3k3

24
+

(
ζN(5)√
ζN(1)

1
720
−

1
1152

(
ζN(3)

)2(
ζN(1)

)3/2

)
a5k5

]
.

Using closed form expressions for the summations we can write

ω ≈

√
K

a2ρ

[√
1
2

N2 +
1
2

Nak −
1
4 N4 + 1

2 N3 + 1
4 N2√

1
2 N2 + 1

2 N

a3k3

24
(3.2)

+

(1
6 N6 + 1

2 N5 + 5
12 N4 − 1

12 N2√
1
2 N2 + 1

2 N

1
720
−

1
1152

(
1
4 N4 + 1

2 N3 + 1
4 N2

)2(
1
2 N2 + 1

2 N
)3/2

)
a5k5

]
.

For N � 1 (i.e. the number of neighbor interactions is very large) we can keep only the
dominant terms and get

ω ≈

√
K

2a2ρ

[
(Na)k −

1
48

(Na)3k3 +

(
1

2160
−

1
4608

)
(Na)5k5

]
, (3.3)

which agrees with the dispersion relation (3.5) obtained for PD in the next section. The
assumptions N � 1 and Nka � 1 are both satisfied in the continuum limit (a � 1) case,
when we preserve the nonlocality of the system, such that Na remains constant. If instead we
use (3.2) for a nearest-neighbor interaction (N = 1), in the continuum limit we get

ω ≈ ck,

the classical wave equation (6.1) dispersion relation with c =
√

K
ρ

the wave speed.

3.2. Peridynamics Dispersion Relation. We now derive the corresponding dispersion
relation for the peridynamic model. The peridynamic equation of motion for our one dimen-
sional model is

ρü(x, t) =
∫ δ

−δ

c
|ε|

(u(x + ε, t) − u(x, t))dε. (3.4)

We assume u(x, t) = ei(kx+ωt), and get the dispersion relation [9]

ω2 =

∫ δ

0
2

c
ρ|ε|

(1 − cos(kε))dε.

Assuming kδ � 1 (i.e. we assume long wavelengths in the sense of λ � δ, similar to the
previous section) and using a Taylor expansion we obtain, after integration, the relation

ω2 ≈ 2
c
ρ

(
k2δ2

2!2
−

k4δ4

4!4
+

k6δ6

6!6

)
.

Using the Taylor expansion of the function
√

1 + x we get

ω ≈

√
c

2ρ

[
δk −

1
48
δ3k3 +

(
1

2160
−

1
4608

)
δ5k5

]
, (3.5)

180 Peridynamics as an Upscaling of Molecular Dynamics

which is consistent with the nonlocal molecular dynamics model (3.3) under the assumption
of N � 1 and a � 1, s.t. Na = δ, using the relation c = K/a2. Thus, by preserving the
nonlocality of the MD model, our upscaled PD model (3.4) has produced the same dispersion
relationship as the MD model (3.1).

4. Relating Peridynamics and Molecular Dynamics through Higher Order Gradi-
ent Continuum Models. In this section we derive higher order gradient equations of motion
for both the MD and the PD models and show that for a continuum nonlocal approximation,
the equations of motion agree between the models.

4.1. Higher Order Gradient Continuum Model for Molecular Dynamics. To de-
velop a higher order gradient PDE for the nonlocal molecular dynamics model (3.1), we
perform a Taylor expansion in a similar way to the direct expansion technique [5, 1]. Starting
with the 1-D nonlocal linear chain (3.1), we perform a Taylor expansion to get (up to sixth
order) the expression

mü(x, t) = 2K
[(N∑

j=1

j
) 1
2!

au′′(x, t) +
(N∑

j=1

j3
) 1
4!

a3u(4)(x, t) +
(N∑

j=1

j5
) 1
6!

a5u(6)(x, t)
]
.

Using closed form expressions for the summations we can write

mü(x, t) = 2K
[(N2

2
+

N
2

) 1
2!

au′′(x, t) +
(N4

4
+

N3

2
+

N2

4

) 1
4!

a3u(4)(x, t)

+
(N6

6
+

N5

2
+

5
12

N4 −
N2

12

) 1
6!

a5u(6)(x, t)
]
.

As in section 3.1, we take N � 1 (keeping only the dominant terms), and use the mass-density
relation m = ρa to get a higher order gradient continuum model

ü(x, t) =
2K
a2ρ

[
(Na)2

2!2
d2u
dx2 +

(Na)4

4!4
d4u
dx4 +

(Na)6

6!6
d6u
dx6

]
, (4.1)

which agrees with the higher order gradient continuum model (4.2) derived for the PD model
in the next section.

4.2. Higher Order Gradient Continuum Model for Peridynamics. To develop a higher
order gradient PDE for peridynamics, we start from (3.4). Following [2], we use a Taylor ex-
pansion to get the expression

ρü ≈
∫ δ

−δ

c
|ε |

(u′(x, t)ε +
1
2!

u′′(x, t)ε2 +
1
3!

u′′′(x, t)ε3 +
1
4!

u(4)(x, t)ε4)dε.

All the odd powers cancel due to symmetry, leaving

ρü ≈
∫ δ

−δ

c(
1
2!

u′′(x, t)|ε| +
1
4!

u(4)(x, t)|ε|3 +
1
6!

u(6)(x, t)|ε|5)dε

= 2
∫ δ

0
c(

1
2!

u′′(x, t)ε +
1
4!

u(4)(x, t)ε3 +
1
6!

u(6)(x, t)ε5)dε.

Therefore, up to the approximation order presented, we get the expression

ü(x, t) =
2c
ρ

[
δ2

2!2
d2u
dx2 +

δ4

4!4
d4u
dx4 +

δ6

6!6
d6u
dx6

]
, (4.2)

P. Seleson, M.L. Parks and M. Gunzburger 181

where we recover (4.1), the same higher order gradient PDE as in the nonlocal molecular
dynamics case, using the relations δ = Na and c = K/a2 as in section 3.2. We have matched
the equations of motion (4.1) and (4.2) to the sixth order, although one can do this to arbitrary
order.

5. Velocity Verlet Stability Analysis. We perform a stability analysis on the velocity
Verlet algorithm we implement for our molecular dynamics and peridynamics simulations.
We will use this analysis to choose a refinement path for our numerical experiments in the
next section.

Following [3], instead of performing the stability analysis on the velocity Verlet algo-
rithm, we can perform it on the equivalent equation

m
un+1

i − 2un
i + un−1

i

(∆t)2 =
∑

p

Fp, j, (5.1)

with m the particle’s mass, ∆t the time resolution, un
j = u(x j, tn) the displacement at time tn of

a particle that was at x j in the reference configuration, and Fp, j the force that particle p exerts
on particle j. Following our MD model (3.1), we implement a linear spring force of the form

Fp, j =
K

|xp − x j|
(up − u j).

We are interested in mesh refinement and thus prefer to work with densities, instead of
masses. We therefore replace m by ρ∆x (with ρ the mass density of the system and ∆x
the spatial resolution) in (5.1). We let un

j = ζneik j as in a standard Von Neumann stability
analysis, obtaining

ρ

(∆t)2

(
ζ − 2 + ζ−1

)
=

j+N∑
p= j−N

K
(p − j)∆x2

(
eik(p− j) − 1

)
,

with N the number of neighbor interactions. Using the notation q = p − j [8] we write

ρ

(∆t)2

(
ζ − 2 + ζ−1

)
=

N∑
q=−N

K
q∆x2

(
eikq − 1

)
=

N∑
q=1

2
K

q∆x2 (cos(kq) − 1) ≡ −2Mk,

and we notice that Mk ≥ 0. This reduces to the quadratic equation

ζ2 − 2
(
1 − Mk

(∆t)2

ρ

)
ζ + 1 = 0. (5.2)

Solving (5.2) and requiring that |ζ | ≤ 1 leads to the stability condition

∆t <
√

2ρ/Mk =

√
2ρ∑N

q=1
K

q∆x2 (1 − cos(kq))
.

We pick the smallest ∆t for this condition to be satisfied for all k, and replace (1 − cos(kq))
by 2 to get the stability condition

∆t <
√

ρ

K
∑N

q=1
1
q

∆x. (5.3)

This will give us an appropriate refinement path for our numerical experiments in the next
section.

182 Peridynamics as an Upscaling of Molecular Dynamics

6. Numerical Results. Here we present a few simulation results (produced in a 1-D
Matlab code) showing peridynamics as an upscaling of molecular dynamics. We show that
the numerical dispersion appearing in MD is preserved for the case of the continuum PD
solution, in contrast to the CM wave equation

ü(x, t) =
K
ρ

u′′(x, t). (6.1)

In addition, the dispersion effects are also preserved using a coarse grid for the peridynamic
model. For the purposes of this paper, we take the high resolution solutions as numerically
“exact”.

Following [1], we choose our domain to be Ω = [0, 1000]. The initial displacement pro-
file is defined by u(x, 0) = p(x) for all x ∈ Ω, where p(x) is a smooth 21th-order polynomial
such that p ≡ 0 on [0, 490] ∪ [510, 1000], p(500) = 1, and p′(x) = p′′(x) = ... = p(10)(x) = 0
for x = 490, 500, 510. The initial profile is presented in Figure 6.1.

F. 6.1. Initial profile over the range [485, 515]

Because we implement a multiple neighbor interaction, we need to determine how the
force constant K in (3.1) changes for different numbers of neighbor interactions N. Following
[6], we implement a uniform force constant choice that depends on the number of neighbor
interactions as

K =
2Ka

N(N + 1)
,

with Ka the force constant for the case of nearest neighbor interaction. In addition, we choose
a specific refinement path where the time refinement is connected to the spatial refinement.
The relation used is based on the stability condition (5.3), with the form

∆t = ∆t0

√
ρ

K
∑N

i=1
1
i

∆x,

with ∆t0 = 0.85 chosen to get a stable time step.
In Figure 6.2 we compare the results of a molecular dynamics simulation on 4, 001 atoms

with 20 neighbor interactions, a high resolution solution of the peridynamics model (100, 001
particles with 500 neighbor interactions), a coarse peridynamics simulation (2, 001 particles
with 10 neighbor interactions), and a continuum mechanics high resolution solution (200, 001
nodes with 20 neighbor interactions).

P. Seleson, M.L. Parks and M. Gunzburger 183

(a) MD: Nx = 4, 001; N = 20 (b) CM: Nx = 200, 001; N = 20

(c) Fine PD: Nx = 100, 001; N = 500 (d) Coarse PD: Nx = 2, 001; N = 10

F. 6.2. Density evolution for the MD, CM and PD (fine and coarse) cases. The time is represented in the
y-axis (from top to bottom), and the x-axis represents the reference configuration. The colors represent the value of
(y′(x, t))−1, corresponding to the density, with y(x, t) the current position at time t of a point at x in the reference
configuration. Nx is the number of atoms(a), nodes(b), or particles(c,d), and N the number of neighbor interactions

In the CM simulation the horizon tends to 0 producing a local model, in contrast to
the peridynamic approach which keeps a constant horizon of δ = 5, producing a nonlocal
interaction. As we can see, the MD simulation produces similar dispersive effects to the
“exact” solution of peridynamics, in contrast to the continuum mechanics model (6.1) in
which no dispersion occurs. In addition, the peridynamics approach allows us to solve our
system in a coarser mesh which is less computationally expensive. In Table 6.1 we compare
the computational cost of the coarse PD simulation in relation to the MD simulation, showing
the PD simulation incurs only 1/5 the cost of the MD simulation.

T 6.1
PD and MD computational costs. Nx the number of atoms/particles, N the number of neighbor interactions,

and Nt the number of timesteps. The cost of a simulation is estimated by Nx · N · Nt . The relative cost is calculated
in relation to the MD simulation cost.

Model Nx N Nt Relative cost
MD 4,001 20 184 1.00
PD (coarse) 2,001 10 162 0.22

7. Conclusions. We have introduced the peridynamic model as an upscaling of molec-
ular dynamics. We have shown that the dispersion relations and higher order gradient PDE
obtained from MD and PD are consistent to leading order, when the horizon length of the

184 Peridynamics as an Upscaling of Molecular Dynamics

interaction is preserved. In particular, we have presented numerical experiments showing
that the dispersion effects appearing in MD simulations are recovered in PD simulations, in
contrast to classical continuum mechanics, where the dispersion effects disappear.

REFERENCES

[1] M. A M. G, Derivation of higher order gradient continuum models from atomistic models for
crystalline solids, Multiscale Model. Simul., 4 (2005), pp. 531–562.

[2] E. E O. W, On the well-posedness of the linear peridynamic model and its convergence
towards the Navier equation of linear elasticity, Commun. Math. Sci., 5 (2007), pp. 851–864.

[3] E. H, C. L, G. W, Geometric numerical integration illustrated by the Stomer/Verlet method,
Acta Numerica, (2003), pp. 1–51.

[4] M. L. P, R. B. L, S. J. P, S. A. S, Implementing peridynamics within a molecular
dynamics code, Comp. Phys. Comm., (2008).

[5] P. R, Dynamics of dense lattices, Phys. Rev. B, 36 (1987), pp. 5868–5876.
[6] P. S M. G, Bridging methods and boundary treatment for AtC coupling problems, In

preparation.
[7] S. A. S, Reformulation of elasticity theory for discontinuities and long-range forces, Journal of the Me-

chanics and Physics of Solids, 48 (2000), pp. 175–209.
[8] S. A. S E. A, A meshfree method based on the peridynamic model of solid mechanics, Computers

and Structures, 83 (2005), pp. 1526–1535.
[9] O. W R. A, The effect of long-range forces on the dynamics of a bar, Journal of the

Mechanics and Physics of solids, 53 (2005), pp. 705–728.

CSRI Summer Proceedings 2008 185

MODELLING QUANTUM EFFECTS FOR CHARON

JIHAN KIM∗ AND GARY L. HENNIGAN†

Abstract. We provide an overview of the mathematical models included in Charon, a numerical simulator code
used to model electrical semiconductor devices. We discuss changes that need to be implemented in order to add
quantum effects to Charon. Specifically, a numerical scheme based on the coupling of the Schrödinger and the
Poisson equations is presented. Finally, we provide results of the electron density distribution at the semiconductor-
insulator interface in the n-channel MOSFET (metal-oxide-semiconductor field-effect transistor), which is obtained
using a simple code written in MATLAB. Results show that taking into account the quantum effects, the peak density
values are located a few nm away from the interface, differing from the classical density distribution that predicts a
peak at the interface.

1. Introduction. As the size of electronic device dimensions shrinks, quantum mechan-
ical effects become more prominent and interfere with proper functioning of the devices[3].
With these phenomena looming ahead, it’s important to obtain an accurate physical picture
of the system in order to correctly capture and to predict device characteristics. For exam-
ple, in minituarized MOSFET devices, significant discrepancies exist between predictions
using classical and quantum physics in the charge densities located at the semiconductor-
insulator interface[4]. This difference becomes more pronounced near inversion gate voltage
bias when carrier concentrations typically are on the same order of magnitude or exceed the
dopant concentration of the bulk semiconductor. Using the classical model, the peak value of
the densities is located at the semiconductor-insulator interface whereas in the more accurate
quantum mechanical model, the peak densities occur away from the interface. As a result, the
effective gate oxide length in the quantum mechanical picture is larger, resulting in smaller
gate capacitance. Also, since the eigenenergies are quantized along the confinement direc-
tion, the ground state eigenenergy level is located above the conduction band edge, effectively
increasing the bandgap energy of the bulk material. Ultimately, these differences manifest
themselves in measurable device electrical characteristics such as the threshold voltage, drain
currents, and gate leakage currents. Thus, it’s important to take into account quantum effects
in order to obtain a more accurate characterization of minituarized devices.

The goal of our project is to add quantum mechanics to Charon, which is an in-house
developed device simulator code. It solves the Poisson and the drift–diffusion electron and
hole currents for various devices such as diodes, BJTs, and MOSFETs. In Section 2, we
describe the mathematical models used in Charon, which is based on both the finite element
method (FEM) and the finite volume method (FVM). For the paper, we focus mainly on
the FEM. In Section 3, formulation of the coupled Schrödinger and the Poisson equations is
presented, and the numerical methods used to solve the equations are outlined. In Section 4,
we show results of the total carrier densities in the channel of a simple n-channel 1D and 2D
MOSFET devices. We show that the distribution of the carrier concentration agrees well with
models predicted by quantum mechanics. All of the results shown in Section 4 are obtained
using a MATLAB code and not in Charon as it is still an ongoing process to add quantum
mechanics to Charon.

2. Drift Diffusion Model of Charon. The PDE residuals of the Poisson and the drift-
diffusion equations are given as follows[1].

Rψ(n, p, ψ) = ∇ · λ2∇ψ + (p − n + Nd − Na) (2.1)

∗University of Illinois at Urbana-Champaign, jihankim@uiuc.edu
†Sandia National Laboratories, glhenni@sandia.gov

186 Modelling Quantum Effects for CHARON

Rn(n, p, ψ) = −∇ · (µnn∇ψ + Dn∇n) +
∂n
∂t
+ r(ψ, n, p) (2.2)

Rp(n, p, ψ) = −∇ · (µp p∇ψ + Dp∇p) +
∂p
∂t
+ r(ψ, n, p) (2.3)

λ is the minimal Debye length of the device, Dn and Dp are electron and hole diffusivities,
µn and µp are electron and hole mobilities, and r is the recombination term. ψ, n, p, Nd, and
Na represent the electric potential, electron and hole concentration, and donor and acceptor
concentration. Both the Dirichlet and the Neumann boundary conditions are used in Charon
with the boundary Γ = ∂Ω, which is composed of two disjoint parts ΓD and ΓN . Ω is the total
domain boundary.

n = nD, p = pD, on ΓD (2.4)

(µnn∇ψ + Dn∇n) · n = 0, on ΓN (2.5)

(µp p∇ψ + Dp∇p) · n = 0, on ΓN (2.6)

The finite element method (FEM) is used to discretize the equations. The corresponding
weak form of the coupled Poisson and the drift-diffusion equations can be represented as
follows

Fψ(n, p, ψ, ψ̂) =
∫

Rψψ̂dΩ, in Ω (2.7)

Fn(n, p, ψ, n̂) =
∫

Rnn̂dΩ + 〈Rn,W(n̂)〉, in Ω (2.8)

Fp(n, p, ψ, p̂) =
∫

Rp p̂dΩ + 〈Rp,W(p̂)〉, in Ω (2.9)

where ψ̂, n̂, and p̂ are test functions. Because the drift-diffusion equations contain both
the advective and diffusive fluxes, they require a special treatment of upwind stabilization
term, indicated by the inner product terms in eqs. (2.8) and (2.9). W(·) is a suitable weight-
ing function that provides additional viscosity. Applying the divergence theorem, we can
transform the weak form equations into following equations.

Fψ =

∫
Rψψ̂dΩ = −

∫
λ2εr∇ψ · ∇ψ̂dΩ

+

∫
Ω

λ2ψ̂εr∇ψ · η̂dΩ

+

∫
(p − n + ND − NA)ψ̂dΩ, in Ω (2.10)

Fn =

∫
Rnn̂dΩ + 〈Rn,W(n̂)〉

=

∫
∂n
∂t

n̂dΩ −
∫
∇ · (−µnn∇ψ + Dn∇n)n̂dΩ +

∫
Rn̂dΩ + 〈Rn,W(n̂〉

=

∫
∂n
∂t

n̂dΩ −
∫

µnn∇ψ · ∇n̂dΩ +
∫

Dn∇n · ∇n̂dΩ

+

∫
Ω

(µnn∇ψ − Dn∇n)n̂ · η̂dΩ +
∫

Rn̂dΩ + 〈Rn,W(n̂)〉, in Ω (2.11)

J. Kim and G.L. Hennigan 187

Fp =

∫
∂p
∂t

p̂dΩ +
∫

µp p∇ψ · ∇ p̂dΩ +
∫

Dp∇p · ∇ p̂dΩ −∫
Ω

(µp p∇ψ − Dp∇p) p̂ · η̂dΩ +
∫

Rp̂dΩ + 〈Rp,W(p̂)〉, in Ω (2.12)

Finally, the Newton-Kantorovich formulation is used to linearize the equations.

F(x∗) = 0 (2.13)

Fk
x x
′k+1 = −Fk (2.14)

xk+1 = xk + x
′k+1 (2.15)

The resulting Jacobian in the Newton-Kantorovich formulation looks as follows.
Dψ -1 1
Fnψ (Mn

∆t + Cn + Rnn) Rnp

Fpψ Rpn (Mp

∆t + Cp + Rpp)

 (2.16)

where

Dψ = −

∫
λ2ε̄r∇ψ

′ · ∇ψ̂dΩ, in Ω (2.17)

Fnψ = −

∫
µ̄nn̄∇ψ′ · ∇n̂dΩ, in Ω (2.18)

Mn =

∫
αn′n̂dΩ, in Ω (2.19)

Cn = −

∫
µ̄nn′∇ψ̂ · ∇n̂dΩ +

∫
D̄n∇n′ · ∇n̂dΩ, in Ω (2.20)

Rnn =

∫
n′
∂R
∂n

dΩ, in Ω (2.21)

Rnp =

∫
p′
∂R
∂p

dΩ, in Ω (2.22)

Fpψ =

∫
µ̄p p̄∇ψ′ · ∇ p̂dΩ, in Ω (2.23)

Mp =

∫
αp′ p̂dΩ, in Ω (2.24)

Cp = −

∫
µ̄p p′∇ψ̂ · ∇ p̂dΩ +

∫
D̄p∇p′ · ∇ p̂dΩ, in Ω (2.25)

Rpp =

∫
p′
∂R
∂p

dΩ, in Ω (2.26)

Rpn =

∫
n′
∂R
∂n

dΩ, in Ω (2.27)

The preconditioned GMRES solver is used to solve the systems of linear equations where
the preconditioner typically used is an ILUT, an incomplete LU preconditioner.

188 Modelling Quantum Effects for CHARON

3. Quantum mechanical numerical Model. In order to add quantum mechanics to
Charon, we first simplify the problem by looking at only the time independent domain. As a
result, the electron and the hold drift-diffusion equations can be taken out from the system of
equations. The general Hamiltonian for N electrons in the system is written in eqn. (3.1),

H =
n∑

j=0

(−i~~∇ j −
e
c
~A j)2

2m∗
+ Ec(~r j) (3.1)

where the effective-mass approximation is used to describe the many-body effects along the
electrons in the conduction band in the two-dimensional (2D) xy plane, and the extension
of the wavefunction along the z-direction is neglected[2]. Ec = −qφ + ∆Ec, where φ is the
potential energy of the system for a given material and ∆Ec is the bandgap offset at different
material interfaces. For this analysis, the material is assumed to be homogeneous (Silicon),
and thus we can ignore the offset term. Two values of effective mass are used: m∗ = 0.916m0

and 0.19m0 where m0 is the free electron mass since Silicon has longitudinal and transverse
valleys corresponding to different effective masses. A is the vector potential term associated
with the magnetic fields and for this paper, we assume zero magnetic fields, which gets rid of
this term.

From the Hamiltonian, we can construct the time-independent Schrödinger Equation

Hψ = Eψ (3.2)

where ψ is the electron wavefunction and E is the eigenvalue associated with the wavefunc-
tion. We convert the equation into a weak formulation and using the Petrov-Galerkin method,
we discretize this weak formulation via the finite element method. We can designate a “quan-
tum region” where electron wavefunctions predominate and solve the Schrödinger equation
in just this sub-domain. For this work, however, the “quantum region” is designated to be the
entire numerical domain for simplicity. Eventually, we would want to create a separate quan-
tum domain in order to provide more accurate boundary conditions and to improve compu-
tational speed. For the boundary conditions, we assume that outside the Schrödinger region,
the wavefunctions disappear and thus use the Dirichlet boundary condition with ψ = 0 at the
boundaries for all eigenvector modes. The electron wavefunctions and the eigenvalues are
calculated using the ARPACK package, which is based on the Implicitly Restarted Arnoldi
Method. In practice, only the few smallest (in magnitude) eigenvalues and eigenvectors are
calculated since the higher-state contributions to the total density are small. After obtaining
the eigenenergies and the corresponding wavefunctions, we can solve the electron densities
using the following equation

n(r) =
∫ ∞

Ec

g(E) f (E)dE (3.3)

where g(E) is the density of states and f (E) is the Fermi-Dirac distribution of the electrons.
Because of quantization effects, the density of states transform into a summation of Dirac
delta functions.

g(E) =
∑

i

2gim∗i
π~2

∑
j

δ(E − Ei j)|ψ j(r)|2 (3.4)

A factor of 2 is needed in front of the summation in order to correctly take into account
spin degeneracies for each state. gi is the degeneracy factor pertaining ith valley of the Silicon

J. Kim and G.L. Hennigan 189

energy band. Substituting this expression for the density of states into eqn.(3.3), we obtain
an analytical expression for the electron density.

n(r) =
∫ ∞

Ec

g(E) f (E)dE =
∑

i

2gim∗i
π~2

∑
j

|ψ j(r)|2 f (Ei j) (3.5)

Now, we can solve the Poisson equation using the electron densities derived from eqn.(3.5).

−∇2φ =
q
εS i

C (3.6)

where C = Nd − Na + n − p.
The Silicon dielectric constant is set to εS i = 11.8εo. Finally, we obtain the potential and

plug it back into the Schrödinger equation and iterate until a sufficient convergence criterion
is met.

4. Results. First, we take a look at a simple 1D MOSFET structure along the direction
perpendicular to the plane of the oxide-semiconductor interface. We can ignore the presence
of drain and source along this particular direction. We set the gate biases to strong inversion
mode where the carrier concentration along the channel becomes predominantly electrons
in this particular case (n-channel). Temperature is set to 300 K and we use three different
acceptor concentrations (Na = 4x1016,Na = 6x1016, and Na = 8x1016cm−3) in the bulk
semiconductor. The device is simulated from the oxide-semiconductor interface to the edge
of the depletion layer, and the electron concentration is assumed to be zero at the boundaries.
This is a good first-order assumption since the potential profile along the numerical domain
looks like a triangular quantum well.

0 10 20 30 40 50
0

0.5

1

1.5

2

2.5x 10
16

x(nm)

ca
rr

ie
r

co
nc

en
tr

at
io

n(
cm

−
3)

Na = 4x1016 cm−3

Na = 6x1016 cm−3

Na = 8x1016 cm−3

F. 4.1. Charge distribution in the inversion layer of the MOS device. The simulations were conducted using
400 elements. The oxide-semiconductor interface is located at x = 0 nm. From the figures, we can see that the
location of the peak concentration moves further away from the interface for lower dopant concentrations

The electron charge distribution obtained from solving the 1D coupled Poisson Schrodinger
equations are plotted in Figure 4.1. We see that for all dopant concentrations, the peak density
level is not located at the interface, which disagrees with the predictions from the classical
model. Also, we observe that smaller the dopant concentrations, the further the peak is from
the interface. This result is elaborated in Figure 4.2.

For Na = 5x1015cm−3, the peak carrier concentration is located 3.87 nm away from the
interface. Upon increasing the dopant concentration, we can see a monotonic decrease in the
peak concentration location. At Na = 3x1017cm−3, the carrier concentration is located 1.6 nm

190 Modelling Quantum Effects for CHARON

0 1 2 3
x 10

17

1.5

2

2.5

3

3.5

4

acceptor concentration(cm−3)

pe
ak

 c
ha

rg
e

lo
ca

tio
n

(n
m

)

F. 4.2. Peak location of the electron densities. Overall, the peak values decrease monotonically with respect
to dopant concentration. The slope, indicating the rate of the change, changes significantly for within these values
of dopant concentrations.

from the interface. Overall, the change in the peak location is more drastic for lower dopant
concentration as indicated by a steeper slope whereas the change becomes smaller for higher
dopant concentration.

Next, we take a look at a more realistic case of a 2D MOSFET structure along a plane
perpendicular to the oxide-semiconductor interface plane. The length of the channel sepa-
rating the drain and source were set at 20 nm. The potential difference between the drain
and the source (VDS) was set at 0.3 V. We set the acceptor concentration of the Silicon bulk
at Na = 1016cm−3. And again, we assumed Dirichlet boundary condition (ψ = 0) along the
boundaries. Figure 4.3 shows the result of the 2D electron density. Similar to the 1D case,
the peak of the density is a few nm away from the potential boundaries.

0 5 10 15 20
0

2

4

6

channel(nm)

x(
nm

)

F. 4.3. Electron densities in a two-dimensional MOSFET at strong inversion with VDS = 0.3 V. The channel
length separating the drain and the source region is set to 20 nm. The density peak is located at around x = 1.75 nm
and channel = 1.75 nm.

In conclusion, we have shown that using a simple MATLAB code and solving for the
Schrödinger and the Poisson equations, the charge density distribution in a simplified MOS-
FET device looks different from the distribution predicted from the classical model. Specif-
ically, the density peak is away from the oxide-semiconductor interface. The ultimate goal,

J. Kim and G.L. Hennigan 191

however, is to incorporate the quantum effects into Charon and there remains ongoing work
to fulfill task.

REFERENCES

[1] P. B, G. H, J. S, Discretization and Solution of the Semiconductor Equations for
CHARON.

[2] D. M, J. L, A. T, N. S, Coulomb localization and exchange modulation in two-
electron coupled quantum dots, Physical Review B, (2006).

[3] M. N I. C, Quantum Computation and Quantum Information, Cambridge University Press,
2000.

[4] F. S W. E. H, Properties of semiconductor surface inversion layers in the electric quantum limit,
Physical Review, (1967).

CSRI Summer Proceedings 2008 192

CALCULATION OF MELTING POINTS USING ATOMISTIC SIMULATIONS

SAIVENKATARAMAN JAYARAMAN∗, EDWARD J. MAGINN†, STEVEN J. PLIMPTON‡, ANATOLE VON
LILIENFELD§, AND AIDAN P. THOMPSON¶

Abstract. A new method for the calculation of melting point of a system was implemented in LAMMPS. This
implementation was tested on a model Lennard-Jones system, and the results were compared against those obtained
from the original code used in the Maginn research group. The data obtained from the LAMMPS simulations, and
the melting point computed using them were in close agreement with the results obtained from the original code.

1. Introduction. Melting point prediction is an inherently difficult problem for which
not many solutions exist in literature. The melting point is an important property to consider
for heat transfer fluids and ionic liquids, and hence knowledge of the melting point will aid in
the selection of candidate liquids for such applications. Design of new compounds for liquid
applications requires knowledge of the melting point, and a method to calculate it will greatly
aid efforts in such a direction.

Computational efforts for calculating melting points are few and there has not been a
unique method which has been widely accepted for such a purpose. Alawi and Thompson
used a void-induced melting method to compute melting points [2, 1]. In this approach,
voids are introduced in the crystal, and a molecular dynamics simulation is conducted on this
modified crystal while ramping up the temperature, and the density is noted. When a first
order transition is observed, it is reported as the melting point. Another direct method is the
simulation of a solid-liquid interface [8, 7, 14, 13, 9], where the temperature and pressure at
which a stable interface between the solid and liquid phases is observed is the coexistence
point.

An alternative approach to calculation of melting point is the phase equilibrium ap-
proach, or the equality of free energy, temperature, and pressure. Some of us have devel-
oped and extended a thermodynamic integration procedure, and have applied it to Lennard-
Jonesium, sodium chloride, benzene, and triazole [3, 4]. Recently, we have successfully
applied this method to compute the melting point of a complex ionic liquid, 1-n-butyl-3-
methylimidazolium chloride [5]. After these successes in predicting melting points of com-
plex molecules accurately, we believe the method should be readily available for public use,
and hence the present effort to incorporate the method into LAMMPS [11].

2. Methodology. Our procedure to calculate the melting point involves two parts. First,
relative Gibbs free energy curves are constructed for the solid and liquid phases by running a
series of isothermal-isobaric (NPT) MD simulations, at various temperatures. The enthalpy
of each phase is recorded at each of these temperatures, and the Gibbs-Helmholtz equation is
integrated to obtain Gibbs free energies relative to an arbitrary reference temperature Tre f

G
RT
−

(G
RT

)
re f
=

∫ T

Tre f

−
H

RT 2 dT, (2.1)

where G is the Gibbs free energy, H is the enthalpy, and T is the temperature, with R, the gas
constant, being chosen according to the units of G and T .

∗University of Notre Dame, sjayaram@nd.edu
†University of Notre Dame, ed@nd.edu
‡Sandia National Laboratories, sjplimp@sandia.gov
§Sandia National Laboratories, oavonli@sandia.gov
¶Sandia National Laboratories, athomps@sandia.gov

S. Jayaraman, E.J. Maginn, S.J. Plimpton, A. von Lilienfeld, and A.P. Thompson 193

The second part involves the use of thermodynamic integration[6] to compute the free
energy difference between the solid and the liquid phases at the reference temperature. This
yields the quantity (G/RT)re f in Eq. 2.1. In this thermodynamic integration method, a five-
state path is constructed between the liquid and the solid phases. The five states are:(1) liquid
at density corresponding to the pressure of interest; (2) a weakly interacting fluid at the liquid
density; (3) a weakly interacting fluid at the crystalline phase density; (4) an ordered weakly
interacting state at the crystal density, and (5) the crystal at the pressure of interest. Each
pair of consecutive states are connected by a path chosen to provide a smooth variation in
free energy along the path. Numerically, this is accomplished by a coupling parameter, λ,
such that λ = 0 corresponds to the initial state, and λ = 1 corresponds to the final state. A
schematic of the thermodynamic path used in this integration procedure is shown in Fig. 2.1,
and shows these five states.

∆∆∆∆G at T = Tref

State 1: Liquid

State 2: Weak fluid

State 3: Dense
weak fluid

State 4: Ordered
weak phase

State 5: Crystal

F. 2.1. A schematic of the thermodynamic cycle used to compute free energy difference between the solid and
liquid phases.

The free energy difference is calculated at the pressure at which the melting point is
required. In principle, any temperature at which the relative free energy in Eq. 2.1 is available,
can be chosen, but in practice the temperature is usually chosen to be Tre f . The difference in
the quantity (G/RT)re f between the solid and liquid phases is given by

∆G
RT
=

∑
∆A

RT
+

P∆Vs−`

RT
, (2.2)

where
∑
∆A is the sum of free energy changes for all four transformations in the five-state

path (Fig. 2.1), and the P∆V term converts this effective Helmholtz free energy difference to

194 Melting Point Calculation

Gibbs free energy. Here, P is the pressure chosen to compute the free energy difference, and
∆V is the difference in volumes between the liquid (state (1)) and the solid (state (5)) phases.

The changes between all adjacent states i and j (except between states 2 and 3) are ac-
complished by changing the coupling parameter λ, and the Helmholtz free energy is computed
using thermodynamic integration as:

∆Ai→ j =

∫ 1

0

〈
∂U
∂λ

〉
λ

dλ, (2.3)

where U is the potential energy of the system and pointed brackets indicate an ensemble
average. λ defines a connecting path such that at λ = 0, state i is recovered, and at λ = 1,
state j is recovered. By definition, the change in free energy depends only on the end points
and not the specific path connecting the end points.

The transformation from state (1) to (2) reduces the intermolecular interactions for the
liquid phase, at constant density, which is the liquid density at the temperature and pressure
of interest. The potential function for this transformation is:

U1→2 = [1 + λ(η − 1)]mUvdW + [1 + λ(η − 1)]nUelec + UNS (2.4)

where η is a scaling parameter between zero and one, m and n are positive integer exponents,
UvdW is the potential energy due to van der Waals type interactions, Uelec is the potential
energy due to electrostatics, and UNS indicates all the other interactions which are not scaled
(like bonds, angles and dihedrals), due to their intramolecular nature.

Transformation from state (2) to (3) involves compressing the box, and transforming its
shape such that the final box has the density and shape of the crystal at the temperature and
pressure of interest. The free energy change for this transformation is calculated as:

∆A2→3 =

∫ VS

V`

− 〈P〉 dV, (2.5)

where V` and VS are the molar volumes of the liquid and solid phases, respectively. The
change in volume is accomplished by changing the cell basis matrix as a function of λ as
follows:

H(λ) = λHs + (1 − λ)H`, (2.6)

where Hs and H` are the solid and liquid cell basis matrices, respectively. The cell basis
matrix, H, is the matrix whose columns are the cell basis vectors a, b and c. λ is s coupling
parameter equivalent to that used in Eq. 2.3.

Transformation to state (4) involves ordering the system, which is achieved by impos-
ing an external potential field that tethers the ion centers of mass and selected atoms to lattice
sites corresponding to the solid structure (state (5)). This external potential field should mimic
the actual crystal as closely as possible. This can be achieved by analyzing how the centers
of mass fluctuate around their average lattice positions in an NVT simulation of the crys-
tal. These fluctuations are assumed to follow a three-dimensional harmonic oscillator, the
probability distribution for which is given by:

P(r) =
(
βκ

π

)3/2

4πr2 exp(−βκr2)dr. (2.7)

We fit this equation to the centers of mass fluctuations, and hence obtain κ. More details
about this three-dimensional harmonic potential function can be found in Refs. [4] and [5].

S. Jayaraman, E.J. Maginn, S.J. Plimpton, A. von Lilienfeld, and A.P. Thompson 195

The potential energy function for transformation between states (3) and (4) is given by:

U3→4(λ) = ηmUvdW + ηnUelec + UNS − λ
∑

i

∑
j

ai j exp(−bi jr2
i j), (2.8)

where the various U have the same definitions as stated in Eq. 2.4. The well depth is ai j, and
the well width is 1/

√
bi j, where ai j = κ/bi j [4].

For the transformation between states (4) and (5), the tethering potential is turned off and
full intermolecular interactions are restored as λ goes from 0 to 1. The potential energy is
given by:

U4→5(λ) = [η + λ(1 − η)]mUvdW + [η + λ(1 − η)]nUelec

+UNS − (1 − λ)
∑

i

∑
j

ai j exp(−bi jr2
i j). (2.9)

3. Simulation details. LAMMPS[11] was chosen to implement this method to take ad-
vantage of its massively parallel infrastructure and also of its efficient handling of molecular
dynamics simulations. To implement thermodynamic integration into LAMMPS, three new
pair potentials had to be created. A pair/lj/cut/alchemy scales the Lennard-Jones in-
teractions (force and energy) by the required scaling factors. A pair/coul/long/alchemy
scales the coulombic interactions (force and energy) by the required scaling factors. The scal-
ing factors for these two interactions have been listed in Eqs. 2.4, 2.8, and 2.9. The third pair
potential which was created was pair/gauss, which imposes a gaussian-type potential field
according to Eqs. 2.8 and 2.9. A LAMMPS fix style fix/alchemy was created to control λ,
and also to change the simulation cell shape and volume for the transformation between states
(2) and (3). A compute/tideriv was created to obtain 〈∂U/∂λ〉λ for each transformation.
pppm/alchemy had to be created to introduce the coulombic scaling to the reciprocal Ewald
terms.

The test system chosen was the same Lennard-Jonesium test system used in Ref. [5].
The simulations in that study were conducted using APSS (software developed by the Mag-
inn group which has been verified against DL POLY [12] and NAMD [10]). Since the goal
of running these test simulations is to verify the implementation of the thermodynamic inte-
gration method, the results for the NPT simulations, and also the initial setup for the thermo-
dynamic integration were taken from these earlier “APSS runs”. The system was an 864 atom
Lennard-Jonesium. A 6 × 6 × 6 fcc supercell was simulated for the solid phase, which was a
cube of side 32.49401 Å. All simulations were conducted at P∗ = 1.0. The thermodynamic
cycle calculations were performed using LAMMPS at T ∗ = 0.7, in the canonical ensemble
using the Nosé-Hoover thermostat. These numbers correspond to 417 bar and 83.9 K for an
argon system. Note that P∗ and T ∗ are the dimensionless Lennard-Jones pressure and temper-
ature given by P∗ = Pσ3/ε and T ∗ = Tkb/ε with kb being Boltzmann’s constant, and σ and ε
being the Lennard-Jones parameters. The simulations were conducted using a 1 fs timestep,
for 100 ps. This was found to be sufficient for equilibration and also to collect statistically
meaningful data. For the Lennard-Jones interactions, ε = 0.238 kcal/mol, and σ = 3.40Å
were used with a cutoff of 2.8σ, and standard long-range corrections were applied. For the
tethering potential used in transformations between states (3) and (4) and between (4) and
(5), κ = 0.473 kcal/mol, and b = 0.5Å−2 were used.

4. Results. Comparison between simulations run using LAMMPS and those run using
APSS are shown in Fig. 4.1. The quantities which contribute to the free energy difference
between the solid and liquid phases are compared here. For transformations between (1) &

196 Melting Point Calculation

(2) (Fig. 4.1(a)); (3) & (4) (Fig. 4.1(c)) and (4) & (5) (Fig. 4.1(d)), the plots show 〈∂U/∂λ〉λ
against λ, while for the transformation between states (2) and (3), the plot shows 〈P〉 against
V (Fig. 4.1(b)). Rough timing data indicate that LAMMPS is an order of magnitude faster
than APSS.

0 0.2 0.4 0.6 0.8 1
λ

0

1

2

3

4

5

6

〈∂
U

/∂
λ〉

λ
(k

J
m

ol
-1

)

APSS run
LAMMPS run

(a) state (1)→ state (2)

34000 35000 36000 37000 38000

Volume (Å
3
)

1200

1300

1400

1500

1600

1700

P
re

ss
ur

e
(b

ar
s)

APSS run
LAMMPS run

(b) state (2)→ state (3)

0 0.2 0.4 0.6 0.8 1
λ

-2

-1.5

-1

-0.5

0

〈∂
U

/∂
λ〉

λ
(k

J
m

ol
-1

)

APSS run
LAMMPS run

(c) state (3)→ state (4)

0 0.2 0.4 0.6 0.8 1
λ

-5

-4.5

-4

-3.5

-3

-2.5

-2
〈∂

U
/∂

λ〉
λ

(k
J

m
ol

-1
)

APSS run
LAMMPS run

(d) state (4)→ state (5)

F. 4.1. Comparison of LAMMPS and APSS across the four different transformations. The red line con-
nects points obtained from simulations run using APSS, while the black data points were obtained from LAMMPS
simulations.

The relative difference in ∆A at each λ point between simulations run using APSS and
those run using LAMMPS for the four transformations is shown in Fig. 4.2. Most of the
points are within 1%, which indicates a good match between the results obtained from the
two codes.

0 0.2 0.4 0.6 0.8 1
λ

-2

-1

0

1

2

1
-

∆A
L

A
M

M
PS

/∆
A

A
PS

S(%
) liquid to weak fluid

weak fluid to dense weak fluid
dense weak fluid to ordered phase
ordered phase to solid

F. 4.2. Relative difference in ∆A between APSS and LAMMPS obtained for the four different transformations
as a function of λ.

S. Jayaraman, E.J. Maginn, S.J. Plimpton, A. von Lilienfeld, and A.P. Thompson 197

Fig. 4.3 shows the variation of ∆G/RT as a function of T ∗. The point at which this curve
intersects ∆G/RT = 0 is taken to be the melting point. Assuming ∆G is normally distributed,
the dashed lines are an estimate of the standard deviation on ∆G/RT . Further details about
calculation of this standard deviation can be found in Ref. [5]. The melting point was then
computed to be T ∗ = 0.74 ± 0.02, which is consistent with the value obtained in the previous
study [5]. This translates to T = 89 ± 2K for an argon system.

0.5 0.6 0.7 0.8 0.9
T*

-0.5

0

0.5

1

∆G
/R

T

F. 4.3. Plot of ∆G/RT as a function of T ∗. The dotted line indicates ∆G/RT = 0, and the T ∗ at its intersection
with the solid line is the melting point. Uncertainty in ∆G/RT is indicated by the dashed lines.

5. Conclusions. A method to compute melting point has been implemented in LAMMPS.
In this method, thermodynamic integration is performed along a thermodynamic cycle con-
structed between the solid and the liquid phases via three intermediate “pseudo-supercritical”
states. The method ensures the equality of pressure, temperature and Gibbs free energy be-
tween the phases.

The method was tested using a model Lennard-Jones system. The results obtained from
the LAMMPS simulations were verified against those from a software package developed
by the Maginn group. The difference between the two calculations was about 1%, which
is consistent with the inherent statistical uncertainty of the method. This indicates that the
method has been correctly implemented in LAMMPS. The melting point for the system was
calculated to be T ∗ = 0.74 ± 0.02 which is consistent with Ref. [5].

The melting points of a variety of materials, notably alkali nitrate salts, can now be
calculated. These molten salts find application as heat-transfer fluids in thermal solar power
plants. This implementation will also be released as part of the LAMMPS distribution in
future.

REFERENCES

[1] S. A D. L. T, Molecular dynamics studies of melting and some liquid-state properties of
1-ethyl-3-methylimidazolium hexafluorophosphate [emim][pf6], J. Chem. Phys., 122 (2005), p. 154704.

[2] S. A D. L. T, Simulations of the solid, liquid, and melting of 1-n-butyl-4-amino-1,2,4-
triazolium bromide, J. Phys. Chem. B, 109 (2005), pp. 18127–18134.

[3] D. M. E, J. F. B, E. J. M, Toward a robust and general molecular simulation method for
computing solid-liquid coexistence, J. Chem. Phys., 122 (2005), p. 014115.

[4] D. M. E E. J. M, Atomistic simulation of solid-liquid coexistence for molecular systems: Appli-
cation to triazole and benzene, J. Chem. Phys., 124 (2006), p. 164503.

[5] S. J E. J. M, Computing the melting point and thermodynamic stability of the orthorhombic
and monoclinic crystalline polymorphs of the ionic liquid 1-n-butyl-3-methylimidazolium chloride, J.
Chem. Phys., 127 (2007), p. 214504.

[6] J. G. K, Statistical mechanics of fluid mixtures, J. Chem. Phys., 3 (1935).
[7] J. R. M X. Y. S, The melting lines of model systems calculated from coexistence simulations, J.

Chem. Phys., 116 (2002), pp. 9352–9358.

198 Melting Point Calculation

[8] J. R. M, C. Z. W, K. M. H, C. T. C, Melting line of aluminum from simulations of coexisting
phases, Phys. Rev. B, 49 (1994), pp. 3109–3115.

[9] E. G. N, C. V, E. M, Determination of the melting point of hard spheres from direct
coexistence simulation methods, J. Chem. Phys., 128 (2008), p. 154507.

[10] J. C. P, R. B, W. W, J. G, E. T, E. V, C. C, R. D. S, L. K,
K. S, Scalable molecular dynamics with NAMD, J. Comput. Chem., 26 (2005), pp. 1781–1802.

[11] S. J. P, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys., 117 (1995),
pp. 1–19. The LAMMPS WWW site is at http://lammps.sandia.gov.

[12] W. S T. R. F, DL POLY 2.0: A general-purpose parallel molecular dynamics simulation
package, J. Mol. Graphics, 14 (1996), pp. 136–141.

[13] Z. G. X, D. Y. S, M. A, J. J. H, Molecular dynamics calculations of the crystal-melt interfacial
mobility for hexagonal close-packed mg, Phys. Rev. B, 75 (2007).

[14] S. Y, X. Z, J. M, The melting lines of model silicon calculated from coexisting solid-liquid
phases, J. Chem. Phys., 120 (2004), pp. 1654–1656.

CSRI Summer Proceedings 2008 199

CONVERGENCE VERIFICATION OF STATIC SOLVERS VIA ENERGY
MINIMIZATION IN LAMMPS

CHRIS HARDEN∗ AND RICH LEHOUCQ†

Abstract. Convergence verification is a well-known and well-understood mathematical exercise used to build
confidence and to perform code verification most typically in the context of solving ordinary and partial differential
equations on a mesh. The challenge presented here is an attempt to recover spatial convergence rates for simulations
performed in a molecular dynamics setting with no underlying mesh. The approach is to use equivalent formulations
on both the atomistic and the continuum scales to develop appropriate problems to be used for convergence testing.
The goal is to be able to generate continuum solutions of the field properties of a system by solving an equivalent
particle based formulation on a lattice. The simulations will be performed in the open source molecular dynamics
package, LAMMPS, developed at Sandia National Laboratories.

1. Introduction. Convergence verification is a mathematical exercise to test that a code
or simulation is converging properly in accordance with its analytical properties [4], [2]. The
convergence rate is determined by the local truncation error. As a simple illustration consider
a second centered difference in space approximation to the second derivative.

d2u
dx2 =

Ui−1 − 2Ui + Ui+1

h2 +
h2

12
u′′′′ + H.O.T. (1.1)

where h is a uniform mesh spacing and Ui ≈ u(ih). The local truncation error τu is the error
obtained by approximating the second derivative by the discrete centered difference scheme.

||τu|| = ||
d2u
dx2 −

Ui−1 − 2Ui + Ui+1

h2 || ≤
h2

12
||u′′′′|| (1.2)

where ||·|| is a norm appropriate for the space in which the solutions to the problem exist.
If the fourth derivative exists, then the second centered difference method is said to be of

second order, and thus we expect to recover a second order rate of convergence.

1.1. Measuring the Rate of Convergence. In practice, we measure the rate of conver-
gence by cooking up an exact solution to our problem by either solving the equations directly,
if the problem is simple enough, or by the well known method of manufactured solutions. In
this case, we assume there exists a constant C independent of the mesh parameter h such that,

||E|| = ||Ui − uexact(ih)|| ≤ Chα (1.3)

for an α ordered method. Then, we will compute Uk for a given mesh spacing hk and compute
the error corresponding to this level of refinement Ek. Next, we further refine the mesh by
choosing a smaller mesh spacing say hk+1 for which we compute Uk+1 and then the corre-
sponding error Ek+1 is computed. Combining two levels of refinement and (1.3) we obtain a
simple formula for the observed rate of convergence. We have that

α =
log(Ek+1/Ek)
log(hk+1/hk)

. (1.4)

The goal of this work is to verify that we can recover rates of convergence in this way
for static problems within the LAMMPS, Large-scale Atomic/Molecular Massively Parallel
Simulator, code developed as an open source project at Sandia National Laboratories [3].

∗Florida State University Department of Scientific Computing, charden@scs.fsu.edu
†Sandia National Laboratories, rblouh@sandia.gov

200 Convergence Verification in LAMMPS

2. Minimization in LAMMPS. The LAMMPS code solves static problems in terms
of energy minimization. Thus, to solve a static problem in the LAMMPS code we use the
minimization routine to find the minimum energy configuration for the system. LAMMPS
solves the following problem

minΦ(X1, X2, . . . , XN), (2.1)

where N is the number of particles used in the system and Φ is a functional representing the
potential energy of the system.

The LAMMPS code has two method options for solving the minimization problems. The
user has the option of either using a conjugate gradient method, which is the default method,
or one can specify a steepest descent method. While the conjugate gradient method tends to
converge faster the steepest descent method will converge to the same minimum.

3. Choosing The Model. To begin we start with a simple linear spring system.
Consider the Cauchy equation of static equilibrium for elastostatics [1],

divσ + b = 0 (3.1)

where for our problem we have no external body force and thus take b = 0 and σ is the
Cauchy stress tensor. In one dimension we have that,

σ = −k
du
dx

(3.2)

where k is the elastic modulus and u is the displacement field for the material. Thus, plugging
(3.2) into (3.1) we have,

divσ = div(−k
du
dx

) = −k
d2u
dx2 = 0. (3.3)

We now have a continuum equation for the displacement of the particles in our linear
spring system. We are interested in the static steady state solution, so to solve this equation
we impose Dirichlet boundary conditions. In the simulation we hold the left boundary at
x = 0 to be zero and at the other end, x = L, we fix the particle there to have a constant
displacement of 1. Thus, we solve the following two point boundary value problem,

− k
d2u
dx2 = 0 (3.4)

u(0) = 0, u(L) = 1.0.

We easily solve this equation, and apply the boundary conditions, for our continuous dis-
placement field u, which gives us,

u(x) =
1
L

x, (3.5)

which is a linear expression.

C. Harden and R. Lehoucq 201

Unfortunately this problem is too simple for a meaningful convergence study. Recall
from (1.2) that the truncation error of a second centered difference approximation is bounded
by the norm of the fourth derivative of the solution. For this problem the solution has a
zero fourth derivative. The issue here is that regardless of how much the mesh is refined the
problem will be solved exactly to within machine precision.

What is observed in practice is that for small systems the error is very near to machine
precision. As the mesh is refined, the system gets larger involving more floating point oper-
ations. Since the discretization error is already zero to within machine precision then when
the system becomes larger the effects of the round off associated with the growing number of
floating point operations begins to effect the total error which will begin to grow slightly as
the mesh is further refined. This will make any convergence study meaningless.

In fig 3.1(a) and fig 3.1(b) one can observe that the LAMMPS and the Matlab results
were well approximated for even a small number of particles.

(a) LAMMPS Result (b) Matlab Result

F. 3.1. Comparative Result for LAMMPS and Matlab w/ 100 Particles

In order to be able to recover convergence rates we need a model with a solution that
has a nonzero fourth derivative. To achieve this we go back to equation (3.1) and choose a
nonzero b that corresponds to adding a loading force to our original system. Here we choose
b = sin(πx

L). Using (3.2), our choice for b, and homogeneous Dirichlet boundary conditions
then (3.4) becomes,

− k
d2u
dx2 = α sin(

πx
L

) (3.6)

u(0) = 0, u(L) = 0.

The solution is easily obtained by an application of a variation of parameters technique
that results in,

u(x) = α(
π

L
)2 1

k
sin(

πx
L

) (3.7)

where L is the length of our simulation domain and α is just a scaling parameter to keep the
displacements from being too large relative to our simulation domain. In our simulations we
take L = 20 and α = 1

40 .

202 Convergence Verification in LAMMPS

We now have a single equation by which we can compare our simulations regardless
of the number of particles we are using in a particular simulation. The goal now is to test
how well this continuum equation is represented as we add more and more particles into our
simulation domain.

3.1. The Problem LAMMPS is Solving. The way that the LAMMPS solves a static
problem is to perform a minimization of the potential energy of the system so that the system
realizes its minimum energy configuration. For the atom and bond style being used the energy
functional for our system is,

Φ =
1
2

∑
i

k̄(xi − xi−1 − r0)2 +
∑

i

xibi, (3.8)

where k̄ = k
∆x2 is the spring constant, k is a parameter measured in force times length, i =

2 . . .N, where N is the number of particles in the simulation, xi, xi−1 are positions in the
current configuration and r0 is the lattice spacing. Looking ahead a bit what we would like
is to show that this minimization problem is equivalent to solving the discretized continuum
equation. In order to see this more easily we would like to be able to write our potential,
and thus the minimization problem, in terms of the displacements ui which is the quantity of
interest in our continuum formulation. This can be done easily by noting that,

r0 = yi − yi−1, (3.9)

where yi, yi−1 are positions in the relaxed reference configuration. This gives,

xi − xi−1 − r0 = (xi − yi) − (xi−1 − yi−1) = ui − ui−1. (3.10)

Thus the first term of the potential can be written in terms of the displacements of our parti-
cles,

Φ =
1
2

∑
i

k̄(ui − ui−1)2, (3.11)

where k̄ = k
∆x2 is the spring constant, i = 2 . . .N, where N = the number of particles in the

simulation, and u is the displacement subject to the constraint defined in (3.4).
The second term that has been added due to the external loading force also has an equiv-

alent displacement formulation. We know that

ui = xi − yi (3.12)

where yi is the reference position. Thus the added term becomes

∑
i

uibi =
∑

i

xibi −
∑

i

yibi =
∑

i

xibi +C (3.13)

where C is a constant. This is an equivalent formulation since energy is defined only up to a
constant. Further, in minimization one is solving the gradient of the energy functional equal

C. Harden and R. Lehoucq 203

to zero and the gradient of a constant is zero then one obtains exactly the same optimality
system to solve during the minimization.

The potential energy functional can thus be written equivalently in terms of the positions
or the displacements of the particles in the system.

Φ =
1
2

∑
i

k̄(ui − ui−1)2 −
∑

i

uibi, (3.14)

where k̄ = k
∆x2 is the spring constant, k is a parameter measured in force times length, i =

2 . . .N, where N is the number of atoms in the simulation, u is the displacement subject to
the constraint defined in (3.6), and bi = α sin(πi∆x/L).

We can write Φ in terms of a quadratic form if we introduce the N × N matrix K where,

K = k̄

1 −1 0 0 . . . 0

−1 2 −1 0 . . .
...

0 −1 2 −1
. . .

...
...

. . .
. . .

. . .
. . . 0

0 . . . 0 −1 2 −1
0 . . . 0 0 −1 1

and we define the vector of displacements,

u =

u1
u2
...

uN

We may express the potential energy in terms of a quadratic form as follows,

Φ =
1
2

uT Ku − uT b, (3.15)

where b is given by,

b =

b0
b1
...

bN

where, again, bi = α sin(πi∆x/L).

LAMMPS then is essentially solving the problem of finding u such that ∇uΦ = 0. Thus
our optimality system is,

∇uΦ = Ku − b = 0. (3.16)

204 Convergence Verification in LAMMPS

If we apply Dirichlet boundary conditions to our 1D system, then we reduce the number
of unknowns by two and obtain the following reduced dimension, (N − 2)×(N − 2) system to
solve,

K̂ū = b̄ (3.17)

where the matrix K̂ is given by,

K̂ = k̄

2 −1 0 . . . 0
−1 2 −1 . . . 0
...

. . .
. . .

. . .
...

0 . . . −1 2 −1
0 . . . 0 −1 2

the vector ū is given by,

ū =

u2
u3
...

uN−1

If we apply the same Dirichlet conditions as in (3.6), then our right-hand side vector b̄ be-
comes,

b̄ =

b1
b2
...

bN−1

It is easy to see that the system of equations given in (3.17) is exactly what one obtains from
discretizing (3.6) with a second centered difference in space. Thus, solving the problem of
minimizing (3.14) is equivalent to solving the discretized differential equation in (3.6).

Also, it now becomes clearer why we needed to choose k̄ = k
∆x2 for our spring con-

stant. Using this choice for the spring constant allows us to directly equate the minimization
problem in LAMMPS with that of solving the discretized differential equation of interest.

4. Numerical Experiments. Now that we have an analytic solution to be able to com-
pare our computational results with, we can use our norm calculations that we have imple-
mented to try and recover the convergence rates of the minimization routine implemented
within the LAMMPS code. For the present work we just look at the behavior of the compu-
tational results in the L∞ norm that is defined,

||E||L∞ = max
i
|u(xi) − Ui| (4.1)

where, Ui is the approximate simulated solution at the point xi.
To compute the rate of convergence we mimic what is done in the case of mesh based

simulations where we take the lattice spacing to be the mesh constant. If we let hi be the mesh

C. Harden and R. Lehoucq 205

constant, assuming a uniform mesh here to start, associated with the ith level of refinement and
Ei be the residual associated with the same level of refinement then the rate of convergence,
call it Rα, is computed according to the formula

Rα =
log(Ei+1/Ei)
log(hi+1/hi)

. (4.2)

This is the standard approach for mesh based simulations on a uniform mesh.

4.1. Matlab. We first look at the convergence of our system (3.6) in Matlab.
The tabulated convergence results for the L∞ norm are as follows:

T 4.1
Convergence Rates for the Matlab Simulation

Refine Lvl Natoms L∞ Rα

1 21 0.0020859 -
2 51 0.000333074 2.002
3 101 8.033336e−5 1.99887
4 201 2.08336e−5 1.999986
5 401 5.21101e−6 1.999277

As can be seen here we do indeed recover the second order rate of convergence as ex-
pected from our analytic results concerning the second centered difference formulation.

(a) 21 Particles (b) 400 Particles

F. 4.1. Matlab Results

4.2. LAMMPS. Next, we now take a look at the results from our simulations in LAMMPS.
The tabulated convergence results for the L∞ norm are as follows:

Here we see that we were indeed able to recover the appropriate rate of convergence for
this problem in the LAMMPS code. One may observe that the convergence rate does begin
to drift from its correct value when the number of particles becomes larger. In LAMMPS
the position of the particles only converges to within single precision. It is believed then that
as the error in the solution gets close to single precision then the roundoff in the simulation
begins to pollute the error calculation thus affecting the measured convergence rate.

206 Convergence Verification in LAMMPS

(a) 21 Particles (b) 400 Particles

F. 4.2. LAMMPS Results

5. Conclusions. We have shown that it is possible to use the minimization routines in
the LAMMPS code to solve static problems. Further, we have shown that it is possible to
recover the solution of continuum problems within this molecular dynamics particle based
code. By seeking an equivalent formulation between both the static continuum problem and
a particle based problem, posed as a minimization problem, we are able to recover the con-
vergence rate predicted by the theory behind the discretization of the continuum problem.

We have successfully verified the spatial convergence of our mesh-free particle simula-
tions by finding an equivalent mesh based formulation of the problem. In practice this may
not always be possible so that techniques for direct convergence verification in particle based
simulations are still desired. However, this approach can be useful for obtaining verification
results of at least some of the most basic options within particle, lattice based simulation
codes.

In LAMMPS the position of the particles only converge to within single precision. This
means that when the error in the computed solutions begins to reach the limit of single pre-
cision then one can no longer recover the proper convergence rate. For these problems once
the lattice was refined to contain more than 400 particles then the error in the solution was
proportionately on the order of 10−7, and thus we were not able to recover the correct rate of
convergence for simulations larger than this. This does not mean, however, that the quality
of larger simulations was degraded. As can be seen in Figure 5.1, for a simulation done with
2000 particles, the LAMMPS solution is nearly indistinguishable from the Matlab solution
that can be verified for this large of a number of particles. This is not a verification argu-
ment but rather an example of code to code comparison between Matlab and LAMMPS. This

T 4.2
Convergence Rates for the LAMMPS Simulation

Refine Lvl Natoms L∞ Rα

1 21 0.00208563 -
2 51 0.000333074 2.002
3 101 8.05099e−5 2.0486
4 201 2.13959e−5 1.91183
5 401 5.70439e−6 1.907

C. Harden and R. Lehoucq 207

merely illustrates that the results are comparable for this larger problem set.

F. 5.1. The LAMMPS and Matlab Solutions for 2000 particles

6. Notes on Implementation. For this set of simulations we are using the atom style
bond and the bond style harmonic to set up linear harmonic springs. For these styles the
initial atomic positions and bond relations must be specified in a data file that is read in by
LAMMPS at runtime. When testing that the routine was working correctly we first wrote
up a small sample data file for testing. In order to do reasonably sized simulations we have
written a C++ code, genData.cc to automatically generate the data file containing the atom
and bond structures which allows us to specify an arbitrarily large number of atoms for a
given simulation.

Also, we have written a LAMMPS fix, f ix add load.cpp, to add the external loading
force to the system and to appropriately adjust the potential energy of the system. The con-
tribution from the loading force needs to be added to the potential due to the fact that this is
the objective function to be minimized by the energy minimization routine.

A key point is the realization of needing to adjust the spring constant for each value of
the lattice constant used. This realization is what allows us to directly link the particle and
the continuum formulations of our problem. Without the link between these formulations,
we would not be able to do the convergence verification presented in this work. Also, the
LAMMPS code does not put the 1

2 factor in front of k̄ as shown in (3.8), so it is up to the user
to factor this into the value of k̄ that they input to the code. This is particularly important to
keep in mind if one is using a fix to add values to the forces and particularly the potential. If
the factor is not added, then there will be a disparity in the scaling between the terms in the

208 Convergence Verification in LAMMPS

objective function to be minimized.

REFERENCES

[1] G. A. H, Nonlinear solid mechanics, a continuum approach for engineering, (2000).
[2] P. M. K K. S, Verification of computer codes in computational science and engineering, (2002).
[3] S. J. P, Fast parallel algorithms for short range molecular dynamics, J. Comp. Phys., 117 (1995),

pp. 1–19. Available at http://lammps.sandia.gov.
[4] P. J. R, Verification and validation in computational science and engineering, (1998).

CSRI Summer Proceedings 2008 209

BUILDING A SUSTAINABLE SIMULATION TESTING ENVIRONMENT

THOMAS L. AMES∗, ALLEN C. ROBINSON†, RICHARD R. DRAKE‡, JOHN H. NIEDERHAUS§,
V. GREGORY WEIRS ¶, AND D. A. LABRECHE ‖

Abstract. As the world of computational science and engineering matures and applications become more com-
plicated and multidisciplinary, scientific and engineering code development practices have come under increasingly
heavy criticism as predictive results are needed in the midst of a dynamic algorithmic and computing environment.
We believe the only solution to obtain the required results in this environment is to elevate testing ethics and practices
to a very high level. Testing is an essential part of code development that is used to ensure the correctness, robust-
ness, and speed of a particular code. Unfortunately, code testing procedures and processes are often inadequate
and can leave leave developers wasting hours of what could be productive time hunting for elusive errors. We give
evidence that the modern software engineering principles of Lean Software Development, when used in conjunction
with methods for code verification and validation, can be used to help mitigate this problem by building a team ethic
along with a corresponding sustainable simulation testing environment.

1. Introduction. The engineering and process issues associated with computational
predictive simulation have been amply discussed in the literature [7, 5]. Essentially, as sim-
ulations have become more complicated and more multidisciplinary with the potential to
become truly predictive, the organizational issues associated with ensuring correctness of the
modeling for a given purpose have become more and more important. The solution is not so
much in the science itself but in the human organizational issues associated with dealing with
complexity. One of the requests from the community writing about these difficult issues is
that data be provided from individual code projects on what they consider to be the key issues
to be solved. This paper is one attempt to provide this feedback.

We wish to make a contribution from the point of view that predictive simulation codes
are, in a sense, always living entities and are never “done.” In computational science, it is
essential for codes to be correct, robust, and fast relative to the best available understanding
at any given time. The only way we know how to do this is to ensure that developers pass
their codes through a series of tests to confirm that their codes perform as desired. Not only
should this be done before releasing a code to the customers, but it should also be carried out
as a tool to aid developers in writing better codes more efficiently. That is, the development
environment should facilitate completely replacing one technology with a better one.

Unfortunately, code testing procedures and processes as well as interactions between sup-
pliers and users of current scientific code development projects can lead to very incomplete
and counterproductive environments. This problem can be especially acute with complex
codes that have been developed over many years with multiple authors. Codes must attempt
to stay up with a changing algorithmic world lest they suffer the potential risk of stagnation
and irrelevance, but the environment may not be conducive to achieving this.

Much work has gone into theories of verification and validation of codes to ensure code
correctness and appropriateness for a given application [5, 8, 4]. Testing of any sort is labor
intensive. Lamentably, our historical observation is that verification and/or validation efforts
quickly become out-of-date after the initial studies are performed. Any specific effort to
verify or validate a code which occurs outside of the permanent development process is of
only limited lasting utility in a dynamic research and development environment. In general,

∗Brigham Young University, tames@byu.net
†Sandia National Laboratories, acrobin@sandia.gov
‡Sandia National Laboratories, rrdrake@sandia.gov
§Sandia National Laboratories, jhniede@sandia.gov
¶Sandia National Laboratories, vgweirs@sandia.gov
‖Sandia National Laboratories, dalabre@sandia.gov

210 Building a Sustainable Simulation Testing Environment

what is most lacking is an environment that allows and encourages a state-of-the-art product
to be continuously maintained in ever changing circumstances.

We believe that the solution to these issues is found in the realm of team processes. It is
actually in the human interaction and team management areas that success or failure is found.

Thus, it is important to have a system to manage the environment. In order for a de-
velopment team to be able to commit to excellence, it needs the necessary tools to actually
carry this commitment forward. We have found that the modern Lean Software Development
ideas developed in the larger software development community map very well to scientific
research and development environments. We believe this is true because these principles are
not strongly dependent on the product being developed. Poppendieck has listed the following
as key Lean principles: eliminate waste, build quality in, create knowledge, defer commit-
ment, deliver fast, respect people and optimize the whole [6]. While we resonate with all of
these ideas, we believe that the practices associated with building quality into software are
key.

One of the key principles of Lean is to build quality into a product by having a “stop-the-
line” mentality of development. In other words, when something is wrong (e.g. the code fails
to pass the test criteria) the highest development priority should be to fix the testing problem.
Additionally, tests are continuously improved to ensure that whatever problems have occurred
can never occur again. This takes great dedication on the part of the developers but can greatly
increase productivity because time is spent ensuring that the code is always correct as built
rather than assuming that it can be fixed later. “Research” and “development” should not have
rigid separations if cutting edge developments are to have immediate impact. Instead, we find
that an integrated research, build, test, and delivery environment that integrates suppliers with
the ultimate users is the best method to assure product utility.

In order for “stop-the-line” to be a beneficial tool for software development there must
be a clear concept of what the “line” is and some automated way to recognize failures. A
continually evolving test suite in a robust and convenient environment is required. In order
to be sustainable, the testing environment must be easy to use as to be executed frequently
to make sure that the code is still sufficient. In addition, no program can guarantee success
without a complete commitment from all team members to the testing activities over the long
term. Accordingly, we will discuss the processes, testing requirements and infrastructure
which we believe necessary to maintain a highly complex simulation code.

2. Process and Testing Requirements. The first key to an effective software develop-
ment environment is a team leader who is willing to set the standard for excellence. This team
leader in the scientific software development environment is the equivalent of the “shusa” in
Japanese automobile product development and production. This team leader must be knowl-
edgeable and be willing to set and support high standards permitting the highest quality work
at every stage of development. This team lead must be relentless in ensuring that the whole
team buys into the pursuit of excellence. We think a somewhat independent testing team is
useful, but, if their work is separated from the core build and test environment of the soft-
ware product, this independent work is of only temporary help and will eventually be lost
and wasted. All testing efforts must occur hand in hand with the software developers and
integrated into a permanent testing environment.

We find that a key idea that is useful in building a quality product is “stop-the-line.” This
term is from quality manufacturing theory but is of critical importance in scientific software
development. In software terms this means that all tests must have an automated pass-fail
criteria, and all the tests in the suites must be continuously tested to ensure that they stay
at the passing level. Any action which results in a failure to pass is understood to be of the
highest priority to fix.

T.L. Ames, A.C. Robinson, R.R. Drake, J.H. Niederhaus, V.G. Weirs and D. A. Labreche 211

In order to understand the importance of a “stop-the-line” mentality of code development,
it is important to understand the basic principle behind this methodology. More technically
called autonomation, “stop-the-line” is part of the Toyota Production system developed by
Taiichi Ohno that made Toyota Motor Corporation so successful. Ohno based his ideas on his
knowledge of Toyoda automated textile looms that could operate without weavers present.
They could do this because looms would detect even the slightest abnormality and shut down
immediately until the cause of the problem was remedied.

Ohno related this system to the human nervous system that governs reflexes such as
breathing, heartbeat, etc. If someone touches a hot stove, for instance, his autonomic nerves
cause him to recoil without waiting for a message from the brain. It does not matter what he
is doing. When his body detects that something is wrong, it immediately stops all tasks at
hand and corrects the problem before work can be resumed [6].

Now, the obvious question is how this helps increase efficiency in computer program-
ming. “Stop-the-line” is used to satisfy the Lean principle of building quality into a product.
Poppendieck asserts that the job of tests is to prevent defects, not to find them. “According to
Shigeo Shingo, there are two kinds of inspection: inspection after defects occur and inspec-
tion to prevent defects. If you really want quality, you don’t inspect after the fact, you control
conditions so as not to allow defects in the first place.” Therefore, tests must be implemented
during the development process not just when the product is ready to be released.

When tests start failing, it is vital stop additional work and fix errors before continuing.
By so doing, errors will not be able to exist and hide in a code until a user complains that the
code is not working properly. Of course, bugs can just be put in a prioritized list of errors to
be fixed before the next release of the code, but trackers such as these are really just lists of
unfinished work that has to be redone. Why would a developer start on a new task if the first
one was never completed? The error has to be found regardless. Often, it is more difficult to
find an error if not done immediately because it becomes harder to remember exactly what
was done in a particular piece of code as time passes.

This being said, some may claim that this practices requires an unreasonable amount of
team dedication or that it is too costly in terms of human time and computing resources. In
response to the first argument we observe that in many fields such as athletics, music, govern-
ment, or even warfare, greatness in a group setting is defined by devotion to the team. While
the transition may be difficult at first, we quickly adapt to new environments if we immerse
ourselves in them. With respect to the second argument, many forget that optimization of the
whole is not necessarily the sum of the optimizations of the parts. In some cases it may be
necessary to be very methodical at an early stage of development to save more time later. In
other words, we eliminate can waste later by building quality and testing methodologies in
now. The recent criticism of scientific computing practices in general have arisen largely due
to the lack of quality in many large scale software simulation products. To respond to this it
is clear that spending the time required to build and maintain a pervasive testing environment
must be seen as an essential aspect of current best practice.

Test-driven development practices minimize “stop-the-line” events. With these practices,
tests are developed early to assure that new coding is up to par before it is even included in the
whole of a product. This does not eliminate indispensability of a “stop-the-line” environment
though. Cutting-edge research is not static, and thus it is important to keep testing the code
even though it passed tests as it was developed because it will inevitably change multiple
times during the lifetime of a particular code base. In essence, we believe that test-driven
development is intrinsically part of the “stop-the-line” methodology. Poppendieck reminds us
that it has been found that development teams that develop unit tests early in the development
process AND “stop-the-line” when errors occur have incredibly low defect rates and very

212 Building a Sustainable Simulation Testing Environment

short time frames to find the cause of defects that are discovered [6].

Moreover, it is pointless to have a “stop-the-line” system implemented if the tests are
not evaluating useful criteria. Roache is adamant that it is important to pay attention to the
semantics when talking about verification and validation in order to ensure that all elements of
the code are properly and completely tested [8]. For instance, by definition, a regression test is
used only to show that the code has not changed significantly by testing it against a baseline
test. It ensures that the code maintains status quo and helps identify which modification
may have caused discrepancies when they arise, but it goes no further to show that the code
is actually behaving as it should. Verification, on the other hand, aims toward testing for
correctness of the mathematics of the code instead of just showing that it has not changed.

No single type of test problem can cover all of the aspects of a numerical simulation
code because there are various types of problems that can occur. In order to have a truly
quality code, it is important to test for problems in the computer science, the accuracy of the
mathematics, the accuracy of the science and/or engineering approach, the speed and scaling
performance of the code, and the code’s ability to solve a “real” problem. When all of these
criteria are met, the user and developer have a better evidence base to claim that the code
is adequate for a given purpose. For us there are five useful classifications of test problems.
They are primarily distinguished by the type of “metrics” that are utilized as part of the test.
We define them as follows:

• Regression – In our terminology, regression tests demonstrate the adequacy of the
computer science. These tests answer the question of whether or not any new ver-
sion of the code gives the same answer as the previous version or alternative ver-
sions running on different numbers of processors or on different machines. These
tests support refactoring, restart testing, parallel-serial consistency checks, and cross
platform compatibility. Most of these tests can be made very fast. Useful software
tools support checking the results of one computation against another to see if they
are getting the same results to roundoff. If they are the same, the test passes, and
otherwise, it fails. This is the regression metric.

The principal purpose of regression tests is to provide a baseline against which
the code can be changed when the developer only wants to change the code and not
the results of the code. This is a critical point. Regression tests by themselves even-
tually produce a type of sluggishness or “anchor” in the long term scientific code de-
velopment process because they fail by definition when next generation algorithms
are implemented. Progress then slows down because tests must be reviewed, and a
new baseline must be established for each one. To get around this fact, it is important
to emphasize other types of tests.

• Verification – Verification tests ensure consistency of the implementation with the
related mathematical problem. In many cases, the mathematical problem is posed
in a continuous system but approximately solved in a discrete system. To provide
a verification test metric, some independent mathematics and/or code is required.
This can be an analytic solution, a symmetry condition, a null test, or a manufac-
tured solution. Order convergence tests are used to assure users and developers that
the code is converging to the right answer at the expected rate. In the end, one is
always comparing one computation against another, but one makes the assumption
that these two different computations utilizing entirely different methodologies will
likely only agree if both are correct.

Verification tests are the principal weapon the code team has to combat the code
development sluggishness introduced by pure computer science based regression
tests. A good verification suite will provide mechanisms for reducing option bloat.

T.L. Ames, A.C. Robinson, R.R. Drake, J.H. Niederhaus, V.G. Weirs and D. A. Labreche 213

As new and better algorithms are developed it is important to remove older, less
effective algorithms. This is part of the “eliminate waste” aspect of Lean Software
Development. A way to easily eliminate older algorithms with high confidence is
to be able to run an existing verification suite which measures the distance of the
current solution from the expected solution. If the code passes the criteria with a
metric which is at least as good if not better as the old method, then the code can be
upgraded to the new and improved algorithm. Confidence can then be built to allow
complete removal of the older algorithm from the code base in order to reduce the
complexity of the code base that must be maintained. Unit tests can be verification
tests if they check small pieces of the code with known mathematical results.

• Validation – Validation tests compare the simulations code’s results to experimental
data in order to show how well it represents the science and engineering of interest.
In essence, validation problems show that we are using the right equations for what
we are trying to model. In this case, one needs experimental results with error bars.
Changing code algorithms for the better should not move the computational results
outside the experimental errors bars unless the physical model itself was in error. If
they do, there is something wrong either in the equations that are posed or in the
coefficients of those equations. With the proper equations and a verified code, the
essence of a given science and engineering problem reduces to ensuring that the
equations and their associated closure models are adequate for the actual physical
system of interest.

• Performance – Performance tests monitor the speed or the parallel scaling of the
code. It is important that these tests are run relative to well understood baselines on
specific machines in order to to achieve meaningful results. The broader the set of
performance metrics implemented in the test suite, the more likely that the team can
immediately catch any performance loss as the code is developed.

• Prototype – Prototype tests demonstrate that the code continues to run sample “real”
problems. These are key calculations that we always want to run to completion. The
only metric we have is that these computations should successfully complete with
reasonable results. This category is mainly an attempt to measure the robustness
state of the code and to avoid regression in large scale robustness. We should always
be able to complete these potentially long running problems. In many cases, these
computations should migrate to validation problems whenever possible.

The five types of problems mentioned above are the categories we have found so far to be
useful as a testing taxonomy to ensure that the code base is consistently improving. In order
to make sure that all pertinent tests are run, it is important to make one testing environment
for all developers and testers. Some of the basic requirements to make a sustainable testing
environment are:

• Simplicity – A user should only have to type one command line prompt to run all
necessary tests, and results should be easily interpreted with a pass-fail criteria. In
addition, it should be easy for a developer or tester to use the infrastructure for
making a test. The environment will be more sustainable if it is simple because all
involved will be more likely to use it to make their lives easier.

• Generality – The infrastructure should allow for different tools to be used for the
different types of problems and for new tools to be easily incorporated if needed.

• Capability – Different functionalities are necessary to setup and analyze different
types of test problems.

• Adaptability – It may not be feasible to always run all of the test problems. A
method for selecting a subset of problems applicable to the developer’s needs should

214 Building a Sustainable Simulation Testing Environment

be available.
• Automaticity – Running of the tests on several machines should be automatic and

easy to accomplish for all developers as well as the members of the testing and
delivery team.

We describe at this time the set of tools that are used to incorporate these principles into
an infrastructure that is used use to test , a highly-complex multi-physics code. This
infrastructure is described in the following section.

3. Testing Infrastructure. With the variety of test problems needing to be executed,
building a sustainable testing environment requires multiple distinct tools. We are working
with , a highly-complex multi-physics finite element code that couples magnetics,
hydrodynamics, thermal conduction, and radiation transport. The code is very large and
requires a correspondingly large amount of testing that needs to be maintained. We have
combined tools that have been developed for the purposes of analyzing and testing into
a more capable environment that combines required features. These tools include: exodiff,
compare final, tampa, and testAlegra; all of which have descriptions that follow.

3.1. exodiff. exodiff helps fulfill the infrastructure requirements of simplicity and
capability. It takes the output from two simulations, called exodus files, and compares
them. If they are different, exodiff alerts the user. In a sustainable environment, the neces-
sary input files for an run are saved with along with a baseline exodus file produced
by an older version of . When testing is required, the inputs are given to the current
version of and exodiff is invoked to compare the results produced to the baseline
file. A test passes if the results are the same within roundoff.

3.2. compare final. compare final is just as simple and adds capability to our test-
ing environment. compare final extracts history data from an exodus or a history file (a
history file is another form of output), then grabs the values of various variables at
the last time step and does a tolerance check on them. A lower tolerance is also available
so that if a much “better” number is ever obtained, the test will fail. In this case the fix is
simply to tighten the tolerance! It is used with single variables such as the time it took to run
the simulation, and is useful as a metric tool for verification, validation, performance, and
prototype problems.

One may argue that such a tool is too simple or that order convergence tests using the
Method of Manufactured Solutions (MMS) is better (for more information on MMS type tests
see [3]). We agree that order convergence tests are important however we also argue that it
is better to have any good verification test implemented and running in the standardized suite
than none at all. Thus having simple tools that every developer can easily use with almost
no effort is important. Developing a verification mindset for the team is extremely important
and simple tools can help facilitate this. We have found it useful to program simple exact or
approximate results into the user input file. The input file is run through a preprocessor and
the resulting output field which is fed to contains the numerical numbers that can be
used in the compare final test.

3.3. tampa. tampa is very useful in setting up test suites where multiple runs are needed
with very similar input. For example, it may be necessary to run the exact same problem on
multiple grid sizes to compare convergence rates (see sec. 4.1). Using a series of xml files,
tampa builds a directory tree to organize the various runs and places the necessary inputs
in each sub-directory. These inputs are generated by tampa which takes a generic input
and fills in user-defined variables with values saved in a separate parameters section using a
preprocessor. tampa then allows a user to run all of the tests that it set up and analyze them
with user defined scripts.

T.L. Ames, A.C. Robinson, R.R. Drake, J.H. Niederhaus, V.G. Weirs and D. A. Labreche 215

tampa is invaluable for setting up and analyzing verification type problems even out-
side of a testing environment. Managing and modifying the myriad of inputs that might be
necessary for a particular study is tedious to say the least, but tampa minimizes the user in-
volvement and thus frustration. It is also very convenient that tampa has built in functionality
to compare runs one to another because this allows the test developer to focus on the analysis
of the test and not on directory searching. Thus, tampa’s principal value is the simplicity it
adds the the test creation process and the automaticity that it adds to running a large number
of tests. In addition, tampa has options for refining the set of problems to be run and analyzed
that makes it adaptable.

3.4. testAlegra. In addition to these analysis tools, we have developed the driver
testAlegra to run the test problems and utilize the tools that we have already discussed.
It walks a directory tree looking for xml files with a certain tag. Stored in these xml files is a
series of instructions that helps testAlegra setup, run, and analyze a problem. Then, from
the analysis, it reports back as simple pass, fail, or diff (“difference”) for each problem that it
runs.
testAlegra is general enough that new tools can easily be incorporated into the test

building or analyzing process as new tools are developed. Admittedly, we used tools that
we had already developed with slight modifications as a starting place in our new testing
methodology instead of building tools around our requirements, but as our processes evolve
to more completely fulfill those requirements, testAlegra will easily accept the changes.

Furthermore, testAlegra is able to automatically run every problem in our testing envi-
ronment with a single command line prompt. At the command line, keywords can be selected
to adapt the tests run to the needs of the developer. Additionally, its simple output makes it
easy for a user to interpret the results of the tests that they ran. One idea that is not currently
present in testAlegra however is the need for a “footnoted” pass status. In our experience,
it is common for a new verification problem to expose a weakness in the code. For example
the convergence order may not be as high as one expects. This weakness may take some time
to fix yet one still wants to run the verification test on a routine basis as part of the normal
testing process to ensure that the results do not get worse. To this end we have proposed
a “footnoted pass” status in which the outstanding issues can be documented until they are
fixed.

3.5. Sustainability. The testing tool set means nothing if not backed up by a team ethic
that considers any failure of the above system of binary tests as completely offensive. All
testing failures are taken very seriously. If footed passes exist these should also be constantly
considered for priority attention. In addition, those in charge of testing and distribution should
have the authority and willingness to shut down any new feature commits to the software
repository until testing issues with current committed code are resolved.

In a project that is as complex and with as extensive a history as , a significant
testing infrastructure and coverage debt has accumulated relative to modern best practices.
We believe this to be true for most scientific projects today that did not originate with a full
blown modern testing methodology in mind. We see no recourse here but to start from where
we are and to methodically push forward with the development of tests and testing infrastruc-
ture which are designed to benefit current customers. We believe all customers supporting
current development are by default implicitly supporting whatever testing infrastructure and
verification and validation work that is required to deliver a quality product. In addition, test-
ing debt can be paid down and methodological improvements made by utilizing money set
aside specifically for verification and validation activities. These activities must occur within
the permanent code development testing environment if this money is to be well spent and
have enduring value. The only way to sustain the environment is to consistently take time for

216 Building a Sustainable Simulation Testing Environment

developing and maintaining test problems. As stated before, this takes great discipline on the
part of the development team because this process is time consuming.

Some flexibility in testing methodology and policy will always be required. In the -
 team, it is thought that it is not necessary to run every test every time that new code is
committed. Currently, the policy that has been implemented is that all tests that run either
very quickly or at least moderately fast are run every time a developer wants to commit new
code, and all tests are run on a regular basis by a testing specialist (we used the keywords fast,
medium, and long with fast and medium tests being run before committing). Another view-
point that has been expressed is that it may be more efficient to sort the tests into categories
such as commit, nightly, weekly, and release which categorizes the tests on a basis of how
often a test needs to be run. When a policy is agreed upon, it is easy to facilitate necessary
changes because of testAlegra’s and tampa’s keyword related operation.

Additionally, we find that certain computer science related practices are useful to help
keep a code base that is portable and clean. In particular we utilize

• Compile warnings – We set our compilers to flag for coding which is considered
to be bad programming style or potentially in error. We make policy that warnings
messages from common compilers are not allowed. Keeping a clean warning status
allows for easy flagging of potentially erroneous code directly from compiler. A
clean warning status policy is another “stop-the-line” idea.

• Coverage testing – Various coverage tools are possible to measure the extent to
which lines of code are covered by the test suite. This is used by the testing team to
provide all developers with an up-to-date status of the code coverage.

4. Examples. In order so show examples of the different types of test problems and how
our infrastructure handles them, a few examples are included.

4.1. Ideal MHD Shock Tube. A typical verification test is an order of convergence
test over runs with progressively more refined grids. We implemented this procedure on an
quasi-1D ideal magnetohydrodynamics (MHD) Riemann problem from a paper written by
Dongsu Ryu and T. W. Jones [9]. It has an exact solution, which is preferable for verification
problems, and we use the same exact Riemann solver that was used by Ryu and Jones. For
more information on the equations of ideal MHD and the physical interpretation of their
eigenmodes, see the works by Dai and Woodward, and Jeffrey [1, 2].

This problem is highly shock dominated, and we are interested in the location of the
shock wave and the pre- and post-shock states. When the simulation is finished, the we study
the L1 error norms of the density, pressure, y-component of the velocity, and y-component
of the magnetic field. Density is the standard variable that is studied for this problem so we
start by showing that we can replicate what others in the field are doing. We study pressure
because discontinuities in the solution typically have much larger magnitudes in the pressure
than in the density (because the fluid compresses less and less easily as its entropy increases),
and this allows us to test the thermodynamic coupling of different variables in the simulation.
Further, we study the y-component of the velocity and magnetic field because some of the
strongest errors that we noticed were in the transverse direction to the shock wave.

We use the L1 error norm because shocks introduce strong discontinuities into the so-
lution in this problem, and the L1 norm, being the least dependent on solution smoothness,
is the most likely to provide a reliable and meaningful measure of error. In problems with
smooth solutions, the L2 norm is more common.

We start by using tampa to set up multiple runs with different grid sizes. Since increasing
grid resolution increases run time dramatically, it is important to take account that highly
refined grids will take a long time to compute. Thus, we used tampa’s subset option to allow
a user to select whether they want a fast, medium, or long test. In this particular problem,

T.L. Ames, A.C. Robinson, R.R. Drake, J.H. Niederhaus, V.G. Weirs and D. A. Labreche 217

the quasi-1D grids are 2 × 2 × N. We define the fast subset as including grid resolutions with
N = 16, 32, 64, 128. The medium subset includes the fast grids in addition to a N = 256 grid.
The long subset includes all of the above and grids with N = 512, 1024, 2048.

In the analysis script the variables previously discussed are extracted, and their norms
are taken. Using those norms, the effective rate of convergence is taken between the two
grid resolutions. Minimum and maximum tolerances are set for the orders of convergence so
that “diff” is reported if the results are outside of that range. It is important to have both a
maximum and minimum tolerance in the tool so that a developer will know when the code is
improving. The developer can then “raise the bar” on the code as it improves.

Earlier, we stated that the output needs to be easy to read, and to comply with that re-
quirement, screen output at the end of the run simply reports whether each individual run
passed (meaning that it ran until completion) or failed and whether the convergence study
passed, failed, or diffed. Fail means that the analysis script did not run to completion, diff
means that at least one of the norms of the variables did not fall within the tolerance range,
and pass means that all criteria were met. In order to not clutter the screen with each vari-
able’s results, they are not individually displayed with a status, but if a user wants to know
more, he or she can reference a log where all of the variables tested are listed with the two
grids being compared along with the associated value of the convergence rate.

4.2. Solid Kinematics. The Method of Manufactured Solutions (MMS) is another im-
portant tool in verification testing because it allows the test developer to formulate tests that
can cover features and capabilities of the code in explicit generality. Traditionally, exact so-
lutions begin with the statement of a mathematical problem that are solved using the classical
methods such as separation of variables, series solutions, integral methods, or Green’s func-
tions. MMS, on the other hand, starts by choosing a solution and applying PDE operators to
it to find a source term that balances the equations. This methodology helps ensure that no
testing gaps exist due to exact solutions that are too simple [3].

Using such an MMS approach, we were able to avoid the implementation of a flawed
algorithm. We developed our test suite for the purpose of comparing different approaches for
tracking the kinematics of high deformation solid motion. In particular, we were concerned
with the order of convergence and performance. In so doing, we decided to implement a new
time-stepping algorithm that has improved properties relative to the previous method.

Upon making the change, we ran the convergence suite and were quickly alerted that
something was wrong. Inspection of a convergence rate test showed dramatically lower con-
vergence rates than we had been obtaining with the previous time stepping algorithm. In
many cases these convergence rates were effectively zero or even negative.

Results Before Change Results After Change
1/h
16.
32.
64.
96.

128.

L1 Order
9.557E-02 –
2.038E-02 2.229
3.829E-03 2.412
1.467E-03 2.366
7.532E-04 2.318

L1 Order
1.243E-01 –
6.081E-02 1.032
4.810E-02 0.338
4.645E-02 0.086
4.597E-02 0.036

T 4.1
Comparison of rotation tensor matrix convergence rates for this algorithm also indicated an error in the code.

The left columns show convergence rates of the L1 error norm before implimenting the new time-stepping algorithm.
The right columns show the rates after the change.

The error was a subtle mistake in the implementation of the time integration algorithm.

218 Building a Sustainable Simulation Testing Environment

0 5 10 15
Time

0.0

0.2

0.4

0.6

0.8

%
 E

rr
or

 in
 L

2
No

rm
 o

f R

0 5 10 15
Time

0.0

0.5

1.0

1.5

2.0

2.5

%
 E

rr
or

 in
 L

2
No

rm
 o

f R

F. 4.1. The left figure shows the original percent error versus time for a 2D test problem, while the figure on
the right shows the percent error after the new time stepping algorithm was implemented.

The algorithm in question was presented by Simo and Hughes [10]. They show that

Λn+1 = exp[∆tω̂n+α]Λn; α =

0 ⇒ explicit (forward) Euler
1
2 ⇒ midpoint rule
1 ⇒ implicit (backward) Euler

(4.1)

where

exp[ω̂] = 1 +
sin(‖ω‖)
‖ω‖

ω̂ + 1
2

[
sin(‖ω‖/2)
‖ω‖/2

]2

ω̂2, (4.2)

and ω represents the mapping of the skew-symmetric matrix ω̂ to a vector defined by the
relationship

ω̂h = ω × h; for all h ∈ R3. (4.3)

The implementation mistake was in poorly distributing ∆t so that

exp[∆tω̂] = 1 +
sin(‖ω‖)
‖ω‖

∆tω̂ + 1
2

[
sin(‖ω‖/2)
‖ω‖/2

]2 (
∆tω̂

)2 (4.4)

instead of

exp[∆tω̂] = 1 +
sin(∆t‖ω‖)
‖ω‖

ω̂ + 1
2

[
sin(∆t‖ω‖/2)
‖ω‖/2

]2

ω̂2. (4.5)

Because sin is not a linear function, this yields a drastically different answer even though
it is not visually obvious by code inspection. Without the immediate implementation of a
verification test for this new feature, this bug could have gone unnoticed until much further
down the road. After the fixing the error, the expected results are as shown in Figure 4.2. We
are now in the process of ensuring that these tests are included in the permanent automated
test suite. This experience demonstrates the importance of test-driven development.

5. Conclusion. Mistakes are unavoidable but their long reaching effects can be miti-
gated through the proper implementation of a sustainable testing process and environment.

T.L. Ames, A.C. Robinson, R.R. Drake, J.H. Niederhaus, V.G. Weirs and D. A. Labreche 219

Results After Correction
1/h
16.
32.
64.
96.
128.

L1 Order
9.521E-02 –
2.026E-02 2.232
3.797E-03 2.416
1.452E-03 2.370
7.447E-04 2.322
T 4.2

Rotation tensor matrix convergence rates after correction.

Most importantly, it is essential that the development team buys into and abides by an
ethic that promotes a rigorous testing policy. This attitude is the key to the long term sus-
tainability and health of the code project. The team leader must instill a “stop-the-line”
attitude that insists that regression, verification, validation, performance, or prototype tests
always indicate that the code is behaving as anticipated. Verification tests must be widely
implemented to be able to effectively move algorithmic advances into the mainstream and
leave older algorithm behind. It is essential to have an infrastructure that makes such policies
natural, easy-to-abide and supportive of future development. The key requirements for this
infrastructure are simplicity, generality, capability, adaptability, and automaticity.

Building and maintaining a team and software environment that makes these ideas feasi-
ble should be a high priority for all team members. Adopting these key attitudes and princi-
ples can be a difficult process, but the results brings with it a simulation tool that can be trusted
by users yet still rapidly improved in a dynamic research and development environment.

REFERENCES

[1] W. D P. R. W, An approximate Riemann solver for ideal magnetohydrodynamics, J. Comp.
Phys., 111 (1994), pp. 354–372.

[2] A. J, Magnetohydrodynamics, Oliver and Boyd, Edinburgh, 1966.
[3] P. K C. C. O, A code-verification evidence-generation process model and checklist, Sandia Report,

(2008).
[4] P. K K. S, Verification of Computer Codes in Computational Science and Engineering, 2003.
[5] W. L. O T. G. T, Verification and validation benchmarks, Nuclear Engineering Science,

238 (2008), pp. 716–743.
[6] M. P T. P, Implementing Lean Software Development, 2007.
[7] D. E. P L. G. V, Computational science demands a new paradigm, Physics Today, (2005), pp. 42–

142.
[8] P. J. R, Verification and Validation in Computational Science and Engineering, Hermosa Publishers,

Albuquerque, 1998.
[9] D. R T. W. J, Numerical magnetohydrodynamics in astrophysics: algorithm and tests for one-

dimensional flow, Ap. J., 442 (1995), pp. 228–258.
[10] J. C. S T. J. R. H, Computational Inelasticity, Springer, New York, 1998.

